

## SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
Coimbatore – 35

#### **DEPARTMENT OF MATHEMATICS**

**UNIT -V LAPLACE TRANSFORM** 

### CONVOLUTION :

Defn.

If f(t) and g(t) are two functions defined

for  $t \ge 0$  then the convolution of f(t) & g(t) is

defined as  $f(t) * g(t) = (f * g)(t) = \int_{0}^{t} f(u) g(t-u) du$ 

NOTE: \$ (t) \* 9 (t) = 9 (t) \* 7 (t)

# CONVOLUTION THEOREM :

If \$1t) & g(t) are two laplace transformable functions defined for t >0 then



# SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
Coimbatore – 35

#### **DEPARTMENT OF MATHEMATICS**

#### **UNIT -V LAPLACE TRANSFORM**

Occurrence Convolution theorem find 
$$1 + \left[\frac{3}{(S^2+\alpha^2)^2}\right]$$

$$= 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right] = 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right]$$

$$= 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right] + \left[\frac{3}{(S^2+\alpha^2)^2}\right]$$

$$= 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right]$$

$$= 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right]$$

$$= 2 + \left[\frac{3}{(S^2+\alpha^2)^2}\right$$



## SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
Coimbatore – 35

#### **DEPARTMENT OF MATHEMATICS**

#### **UNIT -V LAPLACE TRANSFORM**

Ind the inverse LT by convolution thm. 
$$\frac{1}{s^{2}(3+5)}$$

$$1^{-1} \left[ \frac{1}{s^{2}(s+5)} \right] = 1^{-1} \left[ \frac{1}{s^{2}} \right] \cdot 1^{-1} \left[ \frac{1}{s+5} \right]$$

$$= 1^{-1} \left[ \frac{1}{s^{2}(s+5)} \right] = 1^{-1} \left[ \frac{1}{s^{2}} \right] \cdot 1^{-1} \left[ \frac{1}{s+5} \right]$$

$$= 1^{-1} \left[ \frac{1}{s^{2}(s+5)} \right] = 1^{-1} \left[ \frac{1}{s^{2}} \right] \cdot 1^{-1} \left[ \frac{1}{s+5} \right]$$

$$= 1^{-1} \left[ \frac{1}{s^{2}(s+5)} \right] = 1^{-1} \left[ \frac{1}{s^{2}(s+5)} \right] =$$

3) using convolution theorem find

(i) 
$$\frac{1}{(s^2+a^2)^2}$$
 soln:  $\frac{1}{2a^2} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{\sin at}{a} - t \cos at \int \frac{1}{a} \int \frac{1}{a}$