

SNS COLLEGE OF TECHNOLOGY

Vazhiamyampalayam, Coimbatore-35

(An Autonomous institution)

Accredited by NBA-AICTE and Re-Accredited by NAAC-UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CHEMISTRY

COURSE NAME : 23CHT102- CHEMISTRY OF ENGINEERING MATERIALS

I YEAR / II SEMESTER

UNIT IV:WATER TECHNOLOGY

TOPIC : 5.INTERNAL CONDITIONING

BRAINSTORMING WITH RECAP

INTERNAL TREATMENT BY BOILER COMPOUNDS

The residual salts that are not removed by external methods can be removed by adding some chemicals directly into the boiler water. These chemicals are known as 'Boiler' compounds'. This method is known as 'Internal treatment'.

Eg) Carbonate conditioning, Phosphate conditioning and Calgon conditioning

Carbonate conditioning: **a**)

Used for low pressure boilers. Here the salts like $CaSO_4$ are converted to easily removable CaCO₃. But sometimes it produces NaOH, CO₂ and hence Carbonic acid. So it is less preferred.

 $CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4$

Rhosphate conditioning:

ed for high pressure boiler. No risk of CO_2 liberation. $3CaSO_4 + 2Na_3PO_4 \rightarrow Ca_3(PO_4)_2 + 3Na_2SO_4$ Three types of Phosphate salts are used: Na_3PO_4 – Tri sodium Phosphate – Used for highly acidic water Na₂HPO₄ – Disodium hydrogen Phosphate – Used for slightly acidic water NaH₂PO₄ – Sodium di hydrogen phosphate – Used for alkaline water

c) Calgon conditioning:

Calgon is the trade name of sodium hexa meta phosphate- Na₂ [Na₄ (PO₃)₆]. With calcium ions it forms a soluble complex and prevents scale and sludge formation. It is used for high and low pressure boilers.

$$2\text{CaSO}_4 + \text{Na}_2[\text{Na}_4(\text{PO}_3)_6] \rightarrow \text{Na}_2[\text{Ca}_2(\text{PO}_3)_6] + 2\text{Na}_2[\text{PO}_3)_6]$$

 Va_2SO_4

SUMMARY

REFERENCES

- O.G. Palanna, "Engineering Chemistry "Tata McGraw-Hill Pub. Co. Ltd, New Delhi.2017. 1.
- Wiley, "Engineering Chemistry", John Wiley & Sons. InC, USA. 2.
- P.C.Jain & Monicka Jain, "Engineering Chemistry", Dhanapat Rai Publising Company Pvt. Ltd. 2017. 3.
- R. Sivakumar and N Sivakumar, "Engineering Chemistry" Tata McGraw-Hill.Pub.Co.Ltd. New Delhi.2009. 4.

