

UNIT IV

JUNCTION FIELD EFFECT TRANSISTOR

Introduction (FET)

- Field-effect transistor (FET) are important devices such as BJTs
 Also used as amplifier and logic switches
- What is the difference between JFET and BJT?

BJT is Current-controlled

3

FET is Voltage-controlled

Types of Field Effect Transistors (The Classification)

Introduction.. (Advantages of FET over BJT)

- High input impedance (MΩ) (Linear AC amplifier system)
- Temperature stable than BJT
- Smaller than BJT
- Can be fabricated with fewer processing
- BJT is bipolar conduction both hole and electron
- FET is unipolar uses only one type of current carrier
- Less noise compare to BJT
- Usually use as an Amplifier and logic switch

Disadvantages of FET Easy to damage compare to BJT

Junction field-effect transistor..

- There are 2 types of **H** n-channel JFET
 p-channel JFET
- Three Terminal
 Drain D
 Gate -G
 Source S

N-channel JFET

□ N channel **J**.

- Major structure is n-type material (channel) between embedded p-type material to form 2 pn junction.
- In the normal operation of an n-channel device, the Drain (D) is positive with respect to the Source (S). Current flows into the Drain (D), through the channel, and out of the Source (S)
- Because the resistance of the channel depends on the gate-to-source voltage (V_{GS}), the drain current (I_D) is controlled by that voltage

N-channel JFET..

P channel JFET: Major structure is p-t

- Major structure is p-type material (channel) between embedded n-type material to form 2 p-n junction.
- Current flow : from Source (S) to Dan (D)
- Holes injected to Source (S) through p type channel and flowed to Drain (D)

P-channel JFET..

Water analogy for the JFET control mechanism

There are three basic operating conditions for a JFET:

- V_{GS} = 0, V_{DS} increasing to some positive value
- V_{GS} < 0, V_{DS} at some positive value
- Voltage-controlled resistor

JFET Characteristic for $V_{GS} = 0 \vee and 0 < V_{DS} < |V_p|$

- To start, suppose $V_{GS}=0$
- Then, when V_{DS} is increased, I_D increases. Therefore, I_D is proportional to V_{DS} for small values of V_{DS}
- For larger value of V_{DS}, as V_{DS} increases, the depletion layer become wider, causing the resistance of channel increases.
- After the pinch-off voltage (V_p) is reached, the I_D becomes nearly constant (called as I_D maximum, I_{DSS}-Drain to Source current with Gate Shorted)

JFET for V_{GS}

= 0 V and $0 < V_{DS} < |V_p|$

I_D versus V_{DS} for $V_{GS} = 0$ V and $0 < V_{DS} < |V_p|$

V_{GS} < 0, V_{DS} at some positive value JFET Characteristic Curve..

- For negative values of V_{GS} , the gate-to-channel junction is reverse biased even with $V_{DS}=0$
- Thus, the initial channel resistance of channel is higher.
- The resistance value is under the control of V_{GS}

If
$$V_{GS} = pinch-off voltage(V_P)$$

The device is in cutoff $(V_{GS} = V_{GS(off)} = V_P)$

- The region where I_D constant The saturation/pinchoff region
- The region where I_D depends on V_{DS} is called the linear/ohmic region

V_{GS} < 0, V_{DS} at some positive value JFET Operating Characteristics

As V_{GS} becomes more negative:

- The JFET experiences pinch-off at a lower voltage (V_p).
- I_D decreases (I_D < I_{DSS}) even though V_{DS} is increased.
- Eventually I_D reaches 0 A.
 V_{GS} at this point is called V_p or V_{GS(off)}...

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

Transfer Characteristics

The input-output transfer characteristic of the JFET is not as straight forward as it is for the BJT. In BJT:

$$I_C = \beta I_B$$

which β is defined as the relationship between I_B (input current) and I_C (output current).