

(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (- π , π) Ploblems on (-IT, IT) and (-l,l) If $f(\pi)$ is said to be odd, then $f(-\pi) = -\frac{1}{2}(\pi)$. If $f(\pi)$ is an all the then $Eg: g(\pi) = \pi P$. Mode junction : Eq: g(x) = x lu (-TT, TT)Now $g(-\pi) = -\pi = -g(\pi) \Rightarrow g(\pi)$ is odd. Egs: 223, SPD 26, tan3 26 DEVON Junction: $I_{\theta} = \frac{1}{2(\pi)} \frac{1}{2} \frac$ RSina,

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)

Coimbatore-641035.

UNIT-IV FOURIER SER	IES AND FOURIER TRANSFORM	FOURIER SERIES-ODD AND EVEN	FUNCTIONS (-π,π)
Formula	_	(-2)	, 2)
B(x)	(-Ⅲ, Ⅲ)		
odd	8(21)= 5 bn Sin n		Do Senta
· · · · · · · · ·	where $b_n = \frac{2}{\pi} \int 31005^{\circ}$	2	for Smith
SEV	0		$o=0$ and $a_{D=0}$
· ₹ { (x) = x	Hore a = 0 and an	=0	
	$\int (30) = \frac{a_0}{2} + \frac{s_0}{p=1} a_p cc$		$+\frac{2}{n=1}\alpha_{n}\cos\frac{n\pi x}{t}$
'4. f(x)=1x	$a_0 = \frac{2}{\pi} \int b(x) dx$	$a_0 = \frac{2}{3}$	grows doc
	0	0	
L) ME"HE	$a_n = \frac{2}{\pi} \int f(x) \cos nx$	$a_n = \frac{a}{k}$	g(a) cos nirada
	Here bn=0	Here bn =	
v Nether odd	$f(0) = \frac{a_0}{a} + \frac{\infty}{n=1} [a_n \cos n]$	$x + b_n \sin n \eta = \frac{1}{2} - \frac{1}{2}$	$+ \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi 2}{4} + b_n \sin \frac{n\pi 2}{4} \right]$
even	$a_0 = \frac{1}{\pi} \int_{\pi}^{\pi} g(x) dx$	$a_0 = \frac{1}{2} \int_{-2}^{2} \frac{3}{2} \cos(\theta - \theta) d\theta$	odx
	$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 3(3(1) \cos n)^2$	$a_n = \frac{1}{2} \int g(x)$) cos 2 dx
	$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(p(r)) g(p(n))$	$b_n = \frac{1}{2} \int_{a}^{b} 8ix$	arn land
	-		
Note:	Odd junction × odd	junction = even for	inction
	even x even =	even	
	even xodd =	odd	
	odd x even =	bba	
	The even in	in t O	

(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (-π,π) the foreview serves for $g(x) = 1 \times 1$, $(-\pi, \pi)$ Fand T. Soln: : -F(2) = Z, (-T, T) 3(21)=121 Now 2(-x)=1-x1=1x1=8(x) Hence bn = 0 >> g(x) is an even junction. : - f(x) = ao + 0 an cos noc $a_0 = \frac{\alpha}{\pi} \int_0^{\pi} g(x) dx = \frac{\alpha}{\pi} \int_0^{\pi} x dx \quad \therefore \quad g(x) = |x| = x, [0, \pi]$ $=\frac{a}{\pi}\left[\frac{x^{a}}{a}\right]^{\pi}$ $a_n = \frac{a}{\pi} \int_{\pi}^{\pi} b_{(x)} \cos nx \, dx = \frac{a}{\pi} \int_{\pi}^{\pi} x \cos nx \, dx$ Suvdx = uv, - u'v2+ u" 3-... $u = \alpha | v = \cos n\alpha$ $u' = 1 | v_1 = \sin n\alpha/n$ $u'' = 0 | v_2 = -\cos n\alpha/n^2$ $= \frac{2}{\pi} \left[\pi \frac{\sin n\pi}{n} + \frac{\cos n\pi}{n^2} + 0 \right]^{T}$ $a_{n} = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} 0, 8 n \text{ is even} \\ -4 & 9 n \text{ is odd} \end{cases}$ $b_{n} = \frac{2}{\pi} \int_{-\pi}^{\pi} (\pi x) \operatorname{Sinnx} dx = \frac{2}{\pi} \int_{0}^{\pi} x \operatorname{Sinnx} dx$ $= \frac{2}{\pi} \left[\frac{(-1)^{n}}{h^{2}} - \frac{1}{h^{2}} \right]$ $=\frac{2}{\pi}\left[x\left(-\frac{1}{2}\left(\frac{1}{2}\right)^{2}-1\right)-1\left(-\frac{1}{2}\left(\frac{1}{2}\right)^{2}+0\right)^{2}\right]$ $=\frac{2}{\pi}\left[-\frac{\pi}{n}\frac{(-1)^{n}}{n}-0\right]$ $b_n = -\frac{2(-1)^n}{n}$

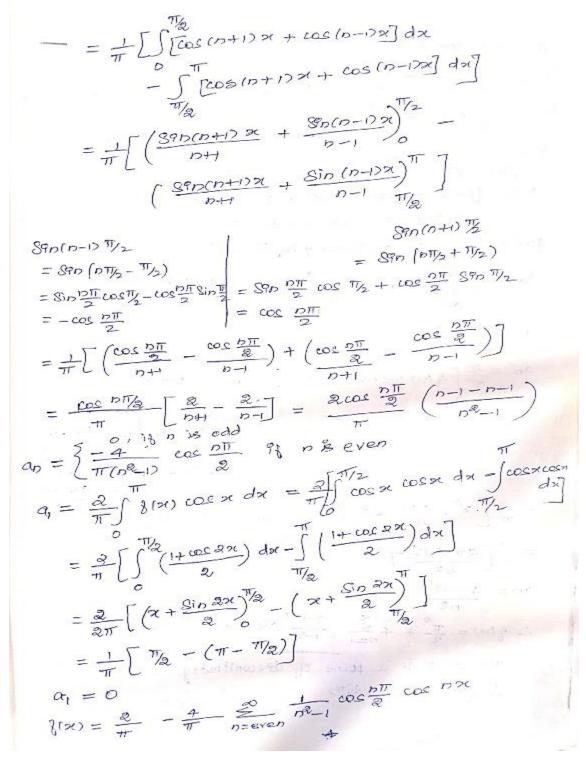
SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)

Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS ($-\pi,\pi$) : blan = T + 5 3 [[-1) - [] - coc now $= \frac{\pi}{2} - \frac{4}{\pi} \stackrel{\infty}{=} \frac{1}{n^2} \frac{1}{n$ 2]. Find the forverer services for fire) = 1 cas x1, (-1), Solo:: S(x)=1cos x()= 2-cosx, 02xxx Now b(-x)=1cos x()=1cos x()= 8(x) => grow is even => bn=0 : 3(x) = ao + s an cos nx 90 = = = (= (21) d> $=\frac{2}{\pi}\left[\int_{-\infty}^{\pi_{A}}\cos x\,dx + \int_{-\infty}^{\pi}\cos x\,dx\right]$ $=\frac{2}{\pi}\left[\left(89n\,\varkappa\right)^{\pi}-\left(89n\,\varkappa\right)^{\Pi}\right]$ = = [[1-0) - [0-1]] $a_0 = \frac{4}{\pi} \pi$ $a_n = \frac{2}{\pi} \int \frac{1}{3} f_{(n)} \cos n \pi \, d\pi$ $= \frac{2}{\pi} \left[\int_{0}^{T} \cos x \cos x \, dx - \int_{0}^{T} \cos x \, \cos x \, dx \right]$ $= \frac{2}{\pi} \left[\int_{0}^{T} \cos x \cos x \, dx - \int_{0}^{T} \cos x \, dx \right]$ $= \frac{2}{\pi} \left[\int_{0}^{T} \cos x \cos x \, dx - \int_{0}^{T} \cos x \, dx \right]$ $= \frac{2}{\pi} \left[\int_{0}^{T} \left[\cos (nx + x) + \cos (nx - x) \right] \, dx - \int_{0}^{T} \left[\cos (nx + x) + \cos (nx - x) \right] \, dx \right]$ The

(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (-π,π)



(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (-π,π)

$$\begin{aligned} y = mnt + mc \quad f.C \quad for \quad f(x) = x^{\frac{2}{2}} \quad (-\pi, \pi). \quad Deduce \neq \infty \\ n \quad \frac{1}{1^{2}} + \frac{1}{\alpha^{2}} + \dots = \frac{\pi^{\frac{2}{2}}}{6} \quad ii). \quad \frac{1}{1^{2}} - \frac{1}{\alpha^{2}} + \dots = \frac{\pi^{\frac{2}{2}}}{\pi^{\frac{2}{2}}} \\ in) \quad \frac{1}{1^{2}} + \frac{1}{\alpha^{\frac{2}{2}}} + \dots = \frac{\pi^{\frac{2}{2}}}{6} \\ solo_{1}: \\ f(x) = x^{\frac{2}{2}} \\ No.c. \quad f(-\infty) = (-x)^{\frac{2}{2}} = x^{\frac{2}{2}} = \frac{f(x)}{2} \\ \Rightarrow f(x) \quad is \quad even \Rightarrow \quad bm = 0 \\ f(w) = \frac{d_{0}}{2} + \frac{x^{\frac{2}{2}}}{2\pi^{\frac{2}{2}}} \quad [a_{0} \cos mx] \quad bm \text{ somall}] \\ a_{0} = \frac{q}{\pi} \int_{0}^{\pi} f(x) \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad cas \quad mx \quad dx \\ a_{0} = \frac{q}{\pi} \int_{0}^{\pi} f(x) \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad cas \quad mx \quad dx \\ a_{1} = 2 \\ w^{11} = 0 \\ y^{\frac{1}{2}} = \frac{x^{\frac{q}{2}}}{\pi} \int_{0}^{\pi} \frac{q}{100} \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad cas \quad mx \quad dx \\ a_{1} = 2 \\ w^{11} = 0 \\ y^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bol \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad cas \quad mx \quad dx \\ a_{1} = 2 \\ w^{11} = 0 \\ y^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bol \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} x^{\frac{q}{2}} \quad cas \quad mx \quad dx \\ a_{1} = 2 \\ w^{11} = 0 \\ y^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bol \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} \frac{\pi^{\frac{q}{2}}}{2} \quad cas \quad nx \quad dx \\ x^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bol \quad bac \quad nx \quad dx = \frac{q}{\pi} \int_{0}^{\pi} \frac{\pi^{\frac{q}{2}}}{2} \quad cas \quad nx \quad dx \\ x^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bol \quad bac \quad nx \quad dx = \frac{q}{\pi^{\frac{1}{2}}} \int_{0}^{\pi} \frac{\pi^{\frac{1}{2}}}{2} \quad bac \quad nx \quad dx \\ x^{\frac{1}{2}} = -\frac{gn}{\pi} \int_{0}^{\pi} \frac{q}{2} \quad bac \quad nx \quad dx \quad a \quad ptrint \quad a_{1} \quad bac \quad bac \quad nx \quad dx \\ x^{\frac{1}{2}} = \pi^{\frac{1}{2}} \quad bac \quad x^{\frac{1}{2}} \quad bac \quad$$

0

(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (-π,π)

$$T^{2} = \frac{\pi^{2}}{3} + 4 \frac{2}{n_{21}} \frac{(-1)^{n}}{n^{2}} (-1)^{n}$$

$$T^{2} - \frac{\pi^{2}}{3} = 4 \frac{2}{n_{21}} \frac{(-1)^{2n}}{n^{2}}$$

$$\frac{2\pi^{2}}{3(4)} = \frac{2}{n_{21}} \frac{1}{n^{2}}$$

$$\frac{2\pi^{2}}{3(4)} = \frac{2}{n_{21}} \frac{1}{n^{2}}$$

$$\frac{1}{1^{2}} + \frac{1}{4^{2}} + \dots = \frac{\pi^{2}}{6}$$
ii). Take $\pi = 0$ is a point 0 , contributly.

$$\therefore y^{(0)} = 0$$

$$\therefore v = \frac{\pi^{2}}{3} + \frac{1}{n^{2}} + \frac{1}{n^{2}} \frac{(-1)^{n}}{n^{2}}$$

$$-\frac{\pi^{2}}{3(4)} = \frac{2}{n^{2}} \frac{(-1)^{n}}{n^{2}}$$

$$-\frac{1}{1^{2}} + \frac{1}{2^{2}} - \frac{1}{3^{2}} + \dots = -\frac{\pi^{2}}{1^{2}}$$

$$\frac{1}{1^{2}} - \frac{1}{4^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{1^{2}}$$

$$\frac{1}{1^{2}} + \frac{1}{2^{2}} - \frac{1}{3^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{1^{2}}$$

$$A = \int \frac{1}{1^{2}} - \frac{1}{4^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{1^{2}}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{1^{2}}$$

$$Bence dedute thet \frac{1}{1^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$Bence dedute thet \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{2}$$

$$A = \int \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{$$

(An Autonomous Institution) Coimbatore-641035.

UNIT-IV FOURIER SERIES AND FOURIER TRANSFORM FOURIER SERIES-ODD AND EVEN FUNCTIONS (-π,π)

$$\begin{aligned} Q_{0} &= 0 \\ Q_{0} &= \frac{2}{\pi} \int_{0}^{\pi} f(x) (os nx dx) \\ &= \frac{2}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (os nx dx) \\ &= \frac{2}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (os nx dx) \\ &= \frac{2}{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi} \int_{0}^{\pi} (1 - \frac{2x}{\pi}) (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{2x}{\pi} + \frac{2}{\pi^{2}\pi} \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{2x}{\pi^{2}} (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi^{2}} (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi^{2}} (1 - \frac{2x}{\pi}) \\ &= \frac{2}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi^{2}} (1 - \frac{2x}{\pi^{2}}) \\ &= \frac{2}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi^{2}} \int_{0}^{\pi} \frac{2x}{\pi$$

 $J \quad \text{Prod the Fourier Seales for <math>\mathcal{D}_{1}(x) = |Sinx|. (-\pi, \pi)$ $(i). \quad f(x) = \begin{cases} -1+x, & -\pi \times x \times 0 \\ 1+x, & 0 \times x \times \pi \end{cases}$ $(ii). \quad f(x) = x + x^{2}, (-\pi, \pi)$