

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

CAUCHY'S RESIDUE THEOREM

cauchy's Residue theorem R Let fizz be a function which 95 analytic Provide and on a symple closed curve c except at finite number of singular point $z_1, z_2, \ldots z_n$ invide c. Then Standz = $2\pi i$ [som of residues of $\frac{7172}{7n}$] 1) Evaluate $\int \frac{e^{2}}{(2+2)(2+1)^{2}} dz$ where e^{-9} the crocle, modulus 121 = 3 using cauchy's sesiclue theorem. Soln: (Z+12)(Z+1)2 The poles of f(z) are, $(z+2)(z+1)^2 = 0$ z=-2 % a pole of order 1 z=-1. Pe a pole of order 2 Griven 121=3 121 = 1-21 = 223, 19es anside c |z|=1-1]=1<3, lies ProPde c z = -2 % a pole of order 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

$$[\text{Res } f(z)]_{z=a} = \lim_{z \to a} (z - a) f(z)$$

$$[\text{Res } f(z)]_{z=-2} = \lim_{z \to -2} (z - (-2)) \frac{e^{z}}{(z + 2)(z + 1)^{2}}$$

$$= \lim_{z \to -2} (z + 2) \frac{e^{z}}{(z + 2)(z + 1)^{2}}$$

$$= \lim_{z \to -2} \frac{e^{z}}{(z + 2)(z + 1)^{2}}$$

$$= \frac{e^{-2}}{(-2 + 1)^{2}} = \frac{e^{-2}}{(-1)^{2}}$$

$$[\text{Res } f(z)]_{z=-2} = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} [z - a)^{m} f(z)]$$

$$[\text{Res } f(z)]_{z=-1} = \frac{1}{(z - 1)!} \lim_{z \to -1} \frac{d^{2-1}}{dz^{2-1}} [z - (-1)^{2} \frac{e^{z}}{(z + 2)}]$$

$$[\text{Res } f(z)]_{z=-1} = \lim_{z \to -1} \frac{d}{dz} \left[\frac{e^{z}}{z + 2} \right]$$

$$[\text{Res } f(z)]_{z=-1} = \lim_{z \to -1} \left[\frac{(z + 2)e^{z} - e^{2}(1)}{(z + 2)^{2}} \right]$$

$$[\text{Res } f(z)]_{z=-1} = \lim_{z \to -1} \left[\frac{(z + 2)e^{z} - e^{z}}{(z + 2)^{2}} \right]$$

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

CAUCHY'S RESIDUE THEOREM

[Res f(z)]
$$z = 1 z = 1 z = 2 (z+2)^{2}$$
[Res f(z)]
$$z = 1 z = 1 z = 1 (z+2)^{2}$$
[Res f(z)]
$$z = 1 (-1)e^{-1} + e^{-1} (-1+2)^{2}$$
[Res f(z)]
$$z = 1 z = 1 z = 1$$
[Res f(z)]
$$z = 1 z = 0$$
By cauchy's residue theorem,
$$z = 1 z = 0$$
Evaluate
$$z = 2 (z+2)(z+1)^{2} z = 2 (e^{-2}) z = 2 (e^{-2}) z = 2 (e^{-2}) z = 2 (e^{-2}) (e^{-2}) z = 2 (e^{-2}) (e^{-2})$$

$$z = 2$$
, is a pole of order,
Griven $|z| = 3/2 = 1.5$
 $|z| = |0| = 0 < 3/2$; lies inside c

z =0, Ps a pole of order;

z=1, is a pole of order,

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

121 = 111 = 1 < 3/2, lies finside c

121 = 121 = 2 < 3/2, lies inside c

Here
$$z=0$$
 % a fole of order 1

[Res $f(z)$] $z=0$ = 1 fm $z=0$ ($z=0$) $\frac{4-3z}{z(z-1)(z-2)}$

= $\frac{1}{z=0}$ $\frac{4-3z}{(z-1)(z-2)}$ = $\frac{4-0}{-1(-2)}$ = $\frac{4}{z}$ = $\frac{2}{z}$

Here $z=1$ % a pole of order 1

[Res $f(z)$] = $\frac{1}{z=0}$ ($z=0$) $\frac{1}{z=0}$ [Res $f(z)$] = $\frac{2}{z=0}$

[Res $f(z)$] = $\frac{4-3z}{z(z-1)(z-2)}$

= $\frac{4-3t_1}{1(1-2)}$ = $\frac{4-3}{1-2}$ = $\frac{1}{-1}$

[Res $f(z)$] = -1
 $z=1$

[Evaluate $\int_{c} \frac{z}{(z-1)^2(z+1)}$

eisole $f(z)$ = $\frac{z}{(z-1)^2(z+1)}$

The poles of $f(z)$ are $z(z-1)^2(z+1) = 0$
 $z=1$, $f(z)$ a pole of order $z=1$. $f(z)$ are $z=1$ a pole of order $z=1$. $f(z)$ a pole of order $z=1$. $f(z)$ a pole of order $z=1$.

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

$$Z = -1 \quad \text{φs} \quad \text{α pole of order 1}$$

$$\begin{cases} \text{Res } -f(z) \end{bmatrix} = \frac{19m}{z-1} \quad (z+1) \frac{z}{(z-1)^2(z+1)}$$

$$= \frac{19m}{z-1} \quad \frac{z}{(z-1)^2}$$

$$= \frac{-1}{(-1-1)^2}$$

$$= -\frac{1}{4}$$

$$\begin{cases} \text{Res } f(z) \end{bmatrix} = -\frac{1}{4}$$

$$\begin{cases} \text{Res } f(z) \end{cases} = -\frac{1}{4}$$

$$\begin{cases} \text{By } \text{ cauchyly } \text{ResPolue } \text{ theorem } \text{,} \\ \frac{z}{(z-1)^2(z+1)} \quad \text{d} z = 2\pi i \left(\frac{1}{4} - \frac{1}{4}\right) = 2\pi i [o] = 0 \end{cases}$$