

Inverse faplace Transformt If the faplace Transform of fit is Fis) (a) L[fit]=Fis) then fit is called an inverse laplace transform of Fis) and is written as fit = L ⁻¹ [Fis] transform of Fis) and is inverse laplace transform where L ⁻¹ is called the inverse laplace transform	
operator. Table of Inverse Laplace Transform	
L [f(t)] = F(s)	$L^{-1}[F(s)] = f(s)$
() L(l) = Vs	L-1 (45)= 1
@ L(H)= YS2	レイ (いいっ)=モ
(3) $L(t^n) = \frac{n!}{5^{n+1}}$	$L^{-1}\left(\frac{n!}{S^{n+1}}\right) = L^{2}$
(a) $L(e^{at}) = \frac{1}{s-a}$	$L^{-1}\left(\frac{1}{s-a}\right) = e^{at}$
$(E) L(e^{-\alpha t}) = \frac{1}{s+\alpha}$	$L^{-1}\left(\frac{1}{s+a}\right) = e^{-at}$
$G L(Sinat) = \frac{a}{S^2 + a^2}$	$L^{-1}\left(\frac{a}{s^{2}ta^{2}}\right) = sinat$
$ E\left(\frac{\sin at}{a}\right) = \frac{1}{g^2 + a^2} $	$L^{-1}\left(\frac{1}{s^2+a^2}\right) = \frac{Risat}{a}$
$ (Los at) = \frac{S}{S^2 + a^2} $	$L^{-1}\left(\frac{S}{S^2+a^2}\right) = \cos at$

@ Change of Scale Property L-1 [F(KS)]= 是F(長) 5 Multiplications by S! If $L^{-1}(F(S)) = F(t)$ and F(0)=0then L'[SF(S)] = d L'[F(S)] If flo) to, then L' [SF(S)] = d L' [F(S)] + f(0) S(E) Note! It L'[______ then use the above note (a) Division by S: $L^{-1}\left[\frac{F(S)}{S}\right] = \int_{0}^{1} L^{-1}\left[F(S)\right] dt$ (7) Inverse Laplace transform of destructives; If L'[F(S] = JUE) then L'[F'(S)] = - E L' [F(S]) Paoblem Identification: If L-1 [s+ any term] then we use the above result.

(a) Note:
If
$$L^{-1}[P(s)] = f(t)$$
 then $L^{-1}[P(s)] = \frac{1}{t} L^{-1}[\frac{d}{dt}F(s)]$
Buddenn Identification:
If $L^{-1}[\log \frac{d}{\sqrt{n}(trin or (at fn or ban fn])} then we use
the above result.
Problems:
1. Find $L^{-1}[\frac{s^2}{(s^2+a^2)(s^2+b^2)}]$
Soln::
 $L^{-1}[\frac{s^2}{(s^2+a^2)(s^2+b^2)}] = L^{-1}[\frac{s^2+a^2-a^4}{(s^2+a^2)(s^2+b^2)}]$
 $= L^{-1}[\frac{1}{(s^2+a^2)(s^2+b^2)}] = L^{-1}[\frac{1}{(s^2+a^2)(s^2+b^2)}]$
 $= L^{-1}[\frac{1}{(s^2+a^2)(s^2+b^2)}] = L^{-1}[\frac{b^2-a^2}{(s^2+a^2)(s^2+b^2)}]$
 $= \frac{1}{b}L^{-1}[\frac{b}{s^2+b^2}] - a^2L^{-1}[\frac{b^2-a^2}{(s^2+a^2)(s^2+b^2)}]$
 $= \frac{1}{b}L^{-1}[\frac{b}{s^2+b^2}] - \frac{a^2}{b^2-a^2}L^{-1}[\frac{b^2-a^2}{(s^2+a^2)(s^2+b^2)}]$
 $= \frac{1}{b}sinbt - \frac{a^2}{b^2-a^2}L^{-1}[\frac{1}{a}sinat - \frac{1}{b}sinbt]$
(a) Find $L^{-1}[\frac{2s-5}{qs^2-as}]$
 $L^{-1}[\frac{2s-5}{qs^2-as}] = L^{-1}[\frac{2s}{qs^2-as}]$
 $L^{-1}[\frac{2s-5}{q(s^2-as)}] = L^{-1}[\frac{2s}{q(s^2-as)}]$
 $= L^{-1}[\frac{2s}{q(s^2-as)}]$$

 $=\frac{2}{9}L^{-1}\left[\frac{5}{5^{2}-(3)^{2}}\right]-\frac{1}{3}L^{-1}\left[\frac{513}{5^{2}-(3)^{2}}\right]$ $= \frac{2}{9} \cosh(\frac{5}{3}) t - \frac{1}{3} \sinh(\frac{5}{3}) t$ (3) Find $L^{-1}\left[\frac{3}{(5+2)^{2}+4}\right]$ $L^{-1}\left[\frac{S}{(S+2)^{2}+4}\right] = \frac{1}{2t}\left[L^{-1}\left(\frac{1}{(S+2)^{2}+4}\right)\right]$ $= \frac{d}{dt} \left[e^{-2t} L^{-1} \left(\frac{1}{s^2 + 2^2} \right) \right]$ $= \frac{d}{dt} \left[\frac{e^{-2t}}{2} L^{-1} \left(\frac{2}{s^2 + 2^2} \right) \right]$ = d (e=2+ sin2+) = = = = (e^{-2t}sin2t) $= \frac{1}{2} \left[e^{-2t} \cos(2t) + \sin(2t) - \sin(2t) - \sin(2t) \right]$ = e^{-2t} cos2t - e^{-2t} sin 2t = == + [LOB2T - SUN2T] (2) Find L'[log (St)] <u>set</u>n: L⁻¹ [log (S+1)] = = = L¹ [= [log ==]) = -1 L-1 [at (log(s+1) - log(s-1))]

HO

$$= \frac{-1}{E} L^{-1} \left[\frac{1}{s+1} - \frac{1}{s-1} \right]$$

$$= \frac{-1}{E} \left(e^{-L} - e^{-L} \right) = \frac{e^{L} - e^{-L}}{E}$$

$$= \frac{2}{E} \left(\frac{e^{-L} - e^{-L}}{2} \right)$$

$$= \frac{2}{E} sinht$$
Producial Freactions:
1. Find $L^{-1} \left[\frac{1}{s(s+1)(s+2)} \right]$
Solon:
$$\frac{1}{s(s+1)(s+2)} = \frac{A}{s} + \frac{B}{s+1} + \frac{c}{s+2} \longrightarrow$$

$$1 = A (s+1)(s+2) + B s(s+2) + c s(s+1)$$
Put $s = -1$

$$1 = B (-1)(-1+2)$$

$$-B = 1 \quad [B = -1]$$
Put $s = -2$

$$1 = c(-2) (-2+1)$$

$$= 1 = -2c$$

$$C = YA$$

Put $\delta = 0$ $I = A [0+2] [0+1] \Rightarrow 2A = I$ A = I(2)

Sub
$$\dot{O}$$
 $\underline{I} = \frac{1}{2s} + \frac{(-1)}{s+1} + \frac{1}{2(s+2)}$
 $\overline{s(s+1)(s+2)} = \frac{1}{2} L^{-1} (\frac{1}{s+1}) + \frac{1}{2} L^{-1} (\frac{1}{s+2})$

$$= \frac{1}{4} - e^{-t} + \frac{1}{4} e^{-2t}$$

$$= \frac{1}{4} \left[1 - 2e^{-t} + e^{-2t} \right]$$
(2) Ford $L^{-1} \left[\frac{s^{2}}{(s^{4})(s^{2} + t_{4})} \right]$
(3)
Set 1:

$$\frac{s^{2}}{(s^{4})(s^{2} + t_{4})} = \frac{A}{s+1} + \frac{Bs+c}{s^{2} + t_{4}}$$

$$s^{2} = A (s^{2} + 4) + (Bs+c)(s+4)$$
Fut s = -1

$$(-1)^{\frac{1}{2}} = A ((-1)^{\frac{2}{2}} + 4) + (B(-1) + c)(-1+4)$$

$$1 = A(5)$$

$$A = V5$$
Put s = 0

$$0 = A (0 + 4) + (B(0) + c)((0+4))$$

$$0 = AA + c$$

$$C = -4A$$

$$Ic = -4H$$

$$Ic = -4H$$

$$Ib = A (10+4) + (B(-4)+c)(-4)$$

$$Ib = A (10+4) + (B(-4)+c)(-3)$$

$$Ib = A 0(V5) + 12B - 3(-4)s$$

$$1b = 4 + 128 + 1245$$

$$12B = 1b - 4 - 1245$$

$$12B = 12 - 1245$$

$$B = 1 - 155$$

$$E^{-1}\left[\frac{52}{(5m)}(5^{2}+4)\right] = 2^{-1}\left[\frac{15}{5t_{1}} + \frac{(45)}{5^{2}+4}(5^{-}+4)\right]$$

$$= \frac{1}{5}E^{-1}\left[\frac{1}{5t_{1}}\right] + \frac{1}{4}E^{-1}\left(\frac{5}{5^{2}+4}\right)$$

$$= \frac{1}{5}E^{-1} + \frac{1}{4}\cos 2t - \frac{1}{4}\frac{50}{502t}$$

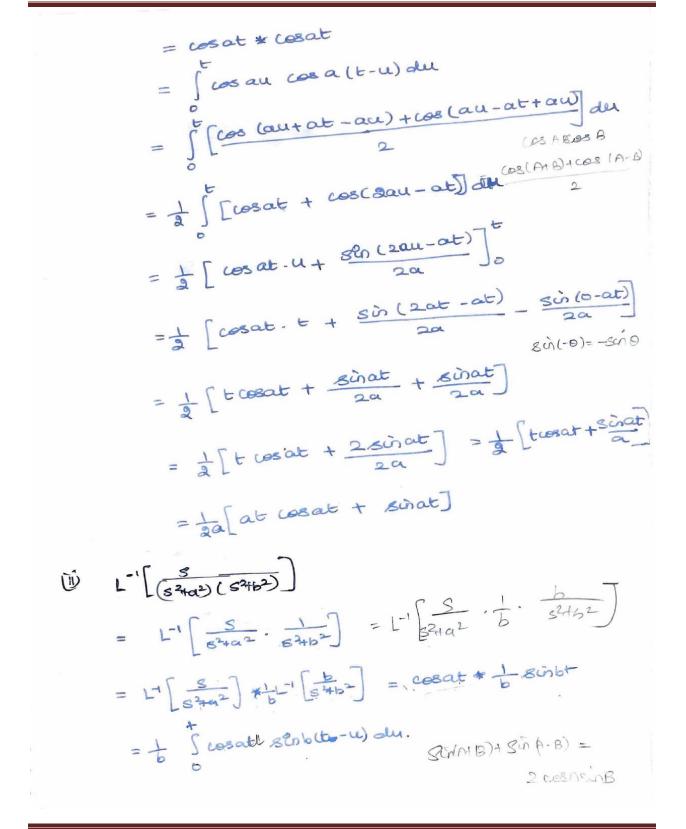
$$= \frac{1}{5}E^{-1} + \frac{1}{5}\cos 2t - \frac{1}{4}\frac{50}{502t}$$

$$= \frac{1}{5}E^{-1} + \frac{1}{5}\cos 2t - \frac{1}{4}\frac{50}{5}\cos 2t$$

$$(3) Find L^{-1}\left[\frac{5^{2}+25t_{1}}{(5t_{3})(5^{-}9)(5^{0})}\right] = 4ms: \frac{1}{12}E^{3t} + \frac{3}{2}E^{3t}$$

$$(3) Find L^{-1}\left[\frac{5}{(5^{-}9)(5^{-}9)(5^{0})}\right] = 4ms: \frac{1}{12}E^{3t} - \frac{3}{13}\cos 2t + \frac{1}{13}\cos 2t + \frac{1}{13}\cos$$

Convolution -It fits and gits are two functions defined for t to then the convolution of fill) and git) is defined as $f(t) \star g(t) = (f \star g)(t) = \int f(u) g(t-u) du$ Note: - fit) * git) = git) * fit) Convolution Theorem 1-If fit and git are two Laplace Fransformable dunctions defined for t =0 then L[fit) * git] is guien by, L[f(E) * g(E)] = L [f(E)]**[g(E)] $L^{-1}[F(S), G(S)] = L^{-1}[F(S)] * L^{-1}[G(S)]$ O Using convolution theorem, find the inverse Broblems:- $\frac{1}{(8^{2}+a^{2})^{2}} \xrightarrow{(11)} \frac{3}{(s^{2}+a^{2})(s^{2}+b^{2})} \xrightarrow{(11)} (s+a)(s+b)$ transform ob $\frac{Solo:}{i} = \frac{1}{\left[\frac{s^2}{(s^2 + a^2)^2}\right]} = \frac{1}{\left[\frac{s}{(s^2 + a^2)}, \frac{s}{(s^2 + a^2)}\right]}$ = $L^{-1} \left[\frac{S}{S^{2} + \alpha^{2}} \right] * L^{-1} \left[\frac{S}{S^{2} + \alpha^{2}} \right]$



$$= \frac{1}{b} \int_{0}^{t} \frac{\sin(bt-bu+aw) + \sin(bt-bu-aw)}{2} du,$$

$$: \sin \beta \cos b = \frac{\sin(a+b) + \sin(a-b)}{2} \frac{\sin(a-b)}{2}$$

$$= \frac{1}{ab} \int_{0}^{t} \sin(bt+(a-b)u) + \sin(bt-(a+b)u) du,$$

$$= \frac{1}{ab} \left[\frac{-\cos(bt+(a-b)u)}{a-b} - \frac{\cos(bt-bt+(a-b)u)}{-(atb)} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{\cos(bt-(a+b)u)}{a+b} - \frac{\cos(bt+at-b)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{\cosh(t-at-bt)}{a+b} - \frac{\cos(bt+at-bt)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{\cosh(t-at-bt)}{a+b} - \frac{\cosh(t+at-bt)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{\cosh(t-at-bt)}{a+b} - \frac{\cosh(t+at-bt)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{1}{a+b} \left[\cosh(t-ab-bt) - \frac{\cosh(t+at-bt)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{1}{a+b} \left[\cosh(t-ab-bt) - \frac{\cosh(t+at-bt)}{a-b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{1}{a+b} \left[\cosh(t-ab-bt) - \frac{(abbt}{a+b} - \frac{(abbt)}{a-b} \right]_{0}^{t} \left[(abbt-ab-bt) - \frac{(abbt)}{a+b} \right]_{0}^{t}$$

$$= \frac{1}{ab} \left[\frac{1}{a+b} \left[\cosh(t-ab-bt) - \frac{(abbt)}{a-b} \right]_{0}^{t} \left[(abbt-ab-bt) - \frac{(abbt)}{a+b} \right]_{0}^{t}$$

$$= \frac{(abbt-ab-bt)}{ab} \left[\frac{a(b-a-b)}{a-b} - \frac{(abbt)}{a+b} \right]_{0}^{t}$$

$$= \frac{(abbt-ab-bt)}{ab} \left[\frac{a(b-a-b)}{a-b} \right]_{0}^{t} \left[(abbt-ab-bt) - \frac{(abbt)}{a-b} \right]_{0}^{t}$$

$$= \frac{(abbt-ab-bt)}{ab(a-b-bt)} \left[\frac{a(b-a-b)}{a-b} - \frac{(abbt-ab-bt)}{a-b} \right]_{0}^{t} \left[(abb-bt-ab-bt) - \frac{(abbt-ab-bt)}{a-b} \right]_{0}^{t}$$

$$\begin{split} (ii) \quad \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{(\mathbf{S}^{+}\mathbf{a})(\mathbf{S}^{+}\mathbf{b})} \end{bmatrix} &= \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{\mathbf{S}^{+}\mathbf{a}} & \frac{1}{\mathbf{S}^{+}\mathbf{b}} \end{bmatrix} \\ &= \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{\mathbf{S}^{+}\mathbf{a}} & \frac{1}{\mathbf{S}^{+}\mathbf{b}} \end{bmatrix} \\ &= \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{\mathbf{S}^{+}\mathbf{a}} & \frac{1}{\mathbf{L}^{-1}} \end{bmatrix} \\ &= \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{\mathbf{S}^{+}\mathbf{a}} & \frac{1}{\mathbf{L}^{-1}} \end{bmatrix} \\ &= \mathbf{L}^{-1} \begin{bmatrix} \frac{1}{\mathbf{S}^{+}\mathbf{b}} \end{bmatrix} \\ &= \mathbf{L}$$