

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 23BMB101-Electron Devices and Circuits

I Year : II Semester

Unit II -Transistors

Topic: Bipolar Junction Transistor

INTRODUCTION

- When a p-type semiconductor is joined with the n-type semiconductor, a p-n junction is formed between them. This p-n junction forms a most popular device known as a semiconductor diode.
- An addition of another layer to a p-n junction diode forms a three terminal device called a transistor that amplifies the electronic signals. The term transistor normally refers to a Bipolar Junction Transistor (BJT).
- The transistor that is made up of one p-type and two n-type semiconductor layers
 is known as n-p-n transistor whereas the transistor that is made up of one n-type
 and two p-type semiconductor layers is known as p-n-p transistor.

Classification of Transistors

Classification of transistors

Bipolar Junction Transistor

- A bipolar junction transistor or BJT is a three terminal electronic device that amplifies the flow of current.
- It is a current controlled device. In bipolar junction transistor, electric current is conducted by both free electrons and holes.
- Bipolar junction transistors are classified into two types based on their construction: They are
 - ✓ NPN transistor
 - ✓ PNP transistor

Bipolar Junction Transistor

Bipolar Junction Transistor

- **Emitter:** As the name suggests, the emitter section supplies the charge carriers. The emitter section is heavily doped so that it can inject a large number of charge carriers into the base. The size of the emitter is always greater than the base.
- Base: The middle layer is called base. The base of the transistor is very thin as compared to emitter and collector. It is very lightly doped.
- Collector: The function of the collector is to collect charge carriers. It is moderately doped. The size of the collector is always greater than emitter and base.

BJT operation modes

- The transistor can be operated in three modes:
 - **✓** Cut-off mode
 - ✓ Saturation mode

Vision Tit 2

- **✓** Active mode
- Applying dc voltage to the transistor is nothing but the biasing of transistor.
- In order to operate transistor in one of these regions, we have to supply do voltage to the npn or pnp transistor.
- Based on the polarity of the applied dc voltage, the transistor operates in any one of these regions.

Cut-off mode

Cutoff mode

Saturation mode

Saturation mode

Active mode

Active mode

NPN transistor

NPN transistor symbol

Working of NPN transistor- Unbiased

 V_{CC}

Current direction in NPN transistor

PNP Transistor

PNP transistor symbol

Working of NPN transistor- Unbiased

Working of NPN transistor- Biased

Current direction in PNP transistor

Types of Transistor Configuration

- S S S
- We know that transistor has three terminals namely emitter (E), base (B), and collector (C). But to connect a transistor in the circuit, we need four terminals: two terminals for input and other two terminals for output.
- When a transistor is to be connected in a circuit, one terminal is used as the input terminal, the other terminal is used as the output terminal and the third terminal is common to the input and output.
- Depending upon the terminal which is used as a common terminal to the input and output terminals, the transistor can be connected in the following three configurations. They are:
 - **✓** Common base (CB) configuration
 - **✓** Common emitter (CE) configuration
 - **✓ Common collector (CC) configuration**

Common base (CB) configuration

$$I_E = I_B + I_C$$

Common base configuration

Transistor Characteristics

Transistor Parameters

Dynamic input resistance (r _i)	Dynamic output resistance (r _o)	Current gain (α)
Dynamic input resistance is defined	Dynamic output resistance is	The current gain of a transistor in
as the ratio of change in input	defined as the ratio of change in	CB configuration is defined as the
voltage or emitter voltage ($V_{\rm BE}$) to	output voltage or collector voltage	ratio of output current or collector
the corresponding change in input	(V _{CB}) to the corresponding change in	current (I _C) to the input current or
current or emitter current (I_E), with	output current or collector current	emitter current (I _E).
the output voltage or collector	(I _C), with the input current or	
voltage (V _{CB}) kept at constant.	emitter current (I _E) kept at constant.	
$r_i = \frac{\Delta V_{BE}}{\Delta I_E}$,	$r_o = \frac{\Delta V_{CB}}{\Delta I_C}$,	$\alpha = \frac{I_C}{I_E}$
$V_{CB} = Constant$	$I_E = Constant$	

Common Emitter Configuration

$$I_E = I_B + I_C$$

Common emitter configuration

Transistor Characteristics

Transistor Parameters

7 <			
5.	Dynamic input resistance (r _i)	Dynamic output resistance (r _o)	Current gain (α)
	Dynamic input resistance is defined	Dynamic output resistance is	The current gain of a transistor in CE
	as the ratio of change in input	defined as the ratio of change in	configuration is defined as the ratio
	voltage or base voltage (VBE) to the	output voltage or collector voltage	of output current or collector
	corresponding change in input	(VCE) to the corresponding change	current (IC) to the input current or
	current or base current (IB), with	in output current or collector	base current (IB).
	the output voltage or collector	current (IC), with the input current	
	voltage (VCE) kept at constant.	or base current (IB) kept at	
	۸١/	constant.	
	$r_i = rac{\Delta V_{BE}}{\Delta I_B},$ $V_{CE} = Constant$	$r_o = rac{\Delta V_{CE}}{\Delta I_C}$,	$\alpha = \frac{I_C}{I_B}$
		$I_B = Constant$	

Common Collector Configuration

Common collector configuration

Transistor Characteristics

Output characteristics

Transistor Parameters

3	Dynamic input resistance (r _i)	Dynamic output resistance (r _o)	Current gain (α)
	Dynamic input resistance is defined	Dynamic output resistance is	The current gain of a transistor in CE
	as the ratio of change in input	defined as the ratio of change in	configuration is defined as the ratio
	voltage or base voltage (V _{BC}) to the	output voltage or emitter voltage	of output current or collector
	corresponding change in input	(V _{EC}) to the corresponding change in	current (IC) to the input current or
	current or base current (IB), with	output current or emitter current	base current (IB).
	the output voltage or emitter	(I _E), with the input current or base	
	voltage (V _{EC}) kept at constant.	current (IB) kept at constant.	
	$r_i = rac{\Delta V_{BC}}{\Delta I_B}$,	$r_o = rac{\Delta V_{CE}}{\Delta I_E}$,	$\gamma = \frac{\Delta I_E}{\Delta I_B}$
	$V_{CE} = Constant$	$I_B = Constant$	