

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 23BMB101-Electron Devices and Circuits

I Year : II Semester

Unit V – Feedback Amplifiers and Oscillators

Topic : Negative Feedback Amplifiers

23BMB101/EDC/Dr.R.Karthick/HoD/BME

INTRODUCTION

- The phenomenon of feeding a portion of the output signal back to the input circuit is known as feedback. The effect results in a dependence between the output and the input and an effective control can be obtained in the working of the circuit. Feedback is of two types.
 - Positive Feedback
 - Negative Feedback

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Positive or regenerate feedback

- In positive feedback, the feedback energy (voltage or currents), is in phase with • the input signal and thus aids it. Positive feedback increases gain of the amplifier also increases distortion, noise and instability.
- Because of these disadvantages, positive feedback is seldom employed in \bullet amplifiers. But the positive feedback is used in oscillators.

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Negative or Degenerate feedback

- In negative feedback, the feedback energy (voltage or current), is out of phase with the input signal and thus opposes it.
- feedback reduces gain of the amplifier. It Negative \bullet distortion, noise and instability.
- feedback increases bandwidth This and improves input \bullet impedances.
- Due to these advantages, the negative feedback is frequently used in amplifiers. \bullet

23BMB101/EDC/Dr.R.Karthick/HoD/BME

also reduce

and output

Source signal and feedback signal are out of phase

BMB101/EDC/Dr.R.Karthick/HoD/BME

Noise and distribution increases

Classification of Feedback Amplifiers

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Current series feedback

(b) Feedback network

VOLTAGE GAIN

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Open-loop gain $A_v = \frac{v_o}{v_i}$

Feedback factor $B = \frac{v_f}{v_o}$

Closed-loop gain $A_{CL} = \frac{A_v}{1 + A_v B}$

INPUT IMPEDANCE

input impedance is given by

$$Z_{b} = \frac{v_{i}}{i_{i}}$$
$$i_{i} = \frac{v_{i}}{Z_{b}}$$

•With negative feedback, the input impedance is

 $=\frac{v_{\rm s}\times L_{\rm b}}{2}$ $Z_i =$ $Z_{i} = (1 + A_{v}B)Z_{b}$

23BMB101/EDC/Dr.R.Karthick/HoD/BME

•If no negative feedback is present in the amplifier, the

OUTPUT IMPEDANCE

$$v_{o} = i_{o} Z$$
$$i_{o} Z_{c} = v_{o}$$
$$= v_{o}$$

 $Z_{o} = \frac{v_{o}}{1}$

23BMB101/EDC/Dr.R.Karthick/HoD/BME

10

• Writing an equation for the voltage drops around the output circuit of the negative feedback amplifier gives

- $Z_c A_v v_f$
- $+A_v v_f$
- $+ A_v B v_o$
- $= v_0(1 + A_v B)$

$$Z_{\rm o} = \frac{Z_{\rm c}}{1 + A_v B}$$

Voltage-Series Feedback

- In the voltage series feedback circuit, a fraction of the output voltage is applied in series lacksquarewith the input voltage through the feedback circuit.
- As the feedback circuit is connected in shunt with the output, the output impedance is ${\bullet}$ decreased and due to the series connection with the input, the input impedance is increased

23BMB101/EDC/Dr.R.Karthick/HoD/BME

$$R_{if} = R_i (1 + A\beta)$$
$$R_{of} = R_o / (1 + A\beta)$$

Voltage-Shunt Feedback

In the voltage shunt feedback circuit, a fraction of the output voltage is applied in ulletparallel with the input voltage through the feedback network. As the feedback circuit is connected in shunt with the output and the input as well, both the output impedance and the input impedance are decreased.

23BMB101/EDC/Dr.R.Karthick/HoD/BME

$R_{if} = R_i / (1 + A\beta)$ $R_{of} = R_o / (1 + A\beta)$

Current-Series Feedback

In the current series feedback circuit, a fraction of the output voltage is applied in • series with the input voltage through the feedback circuit. • As the feedback circuit is connected in series with the output and the input as well, both the output impedance and the input impedance are increased.

23BMB101/EDC/Dr.R.Karthick/HoD/BME

 $\mathbf{R}_{if} = \mathbf{R}_{i} (1 + A\beta)$ $R_{of} = R_o (1 + A\beta)$

Current-Shunt Feedback

In the current shunt feedback circuit, a fraction of the output voltage is applied in • series with the input voltage through the feedback circuit. • As the feedback circuit is connected in series with the output, the output impedance is increased and due to the parallel connection with the input, the input impedance is decreased. **23**BMB101/EDC/Dr.R.Karthick/HoD/BME

$R_{if} = R_i / (1 + A\beta)$ $R_{of} = R_o (1 + A\beta)$

Characteristics	Types of Feedback			
	Voltage-Series	Voltage-Shunt	Current-Series	Current-Shunt
Voltage Gain	Decreases	Decreases	Decreases	Decreases
Bandwidth	Increases	Increases	Increases	Increases
Input resistance	Increases	Decreases	Increases	Decreases
Output resistance	Decreases	15 Decreases	Increases	Increases
Harmonic distortion	Decreases	Decreases	Decreases	Decreases
Noise	Decreases	Decreases	Decreases	Decreases

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Negative Feedback Amplifier Circuit

BMB101/EDC/Dr.R.Karthick/HoD/BME

