

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 23BMB101-Electron Devices and Circuits

I Year : II Semester

Unit V – Feedback Amplifiers and Oscillators

Topic : Hartley Oscillator

23BMB101/EDC/Dr.R.Karthick/HoD/BME

1

INTRODUCTION

- The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by the tuned circuit consisting of capacitors and inductors, that is, an LC oscillator.
- Hartley oscillators are typically tuned to produce waves in the radiofrequency band (which is why they are also known as RF oscillators).
- The distinguishing feature of a Hartley oscillator is that the tuning circuit consists of a single capacitor in parallel with two inductors in series (or a single tapped inductor), and the feedback signal needed for oscillation is taken from the centre connection of the two inductors.

23BMB101/EDC/Dr.R.Karthick/HoD/BME

Construction

23BMB101/EDC/Dr.R.Karthick/HoD/BME

• Here the R_C is the collector resistor while the emitter R_E forms resistor the stabilizing network. Further the resistors R1 and R2 form the voltage divider bias network for the transistor in commonemitter CE configuration.

Oscillator - Construction

- The capacitors Ci and Co are the input and output decoupling capacitors while the emitter capacitor C_E is the bypass capacitor used to bypass the amplified AC signals.
- All these components are identical to those present in a common-emitter amplifier which Vision Th 2 is biased using a voltage divider network.
- On switching ON the power supply, the transistor starts to conduct, leading to an increase in the collector current, I_c which charges the capacitor C.
- On acquiring the maximum charge feasible, C starts to discharge via the inductors L1 and L2. These charging and discharging cycles result in the damped oscillations in the tank circuit.

Oscillators

- The output of the amplifier is applied across the inductor L1 while the feedback voltage drawn across L2 is applied to the base of the transistor.
- At this state, if one makes the gain of the circuit to be slightly greater than the • feedback ratio given by

$$eta = rac{L_1}{L_2}; \;\; if \; the \; coils \; are \; wound \; on the coils \; would \; woul$$

5

$$\beta = \frac{L_1 + M}{L_2 + M}$$

23BMB101/EDC/Dr.R.Karthick/HoD/BME

on different cores

Hartley Oscillator

• The frequency of such an oscillator is given as

$$F=rac{1}{2\pi\sqrt{L_{eff}C}}$$
 is lon Tit 2

 L_{eff} is the effective series inductance which is expressed as $L_{eff} = L_1 + L_2$; if the coils are wound on different cores $L_{eff} = L_1 + L_2 + 2M$; if the coils are wound on the same core

23BMB101/EDC/Dr.R.Karthick/HoD/BME

6