Puzzle 1: Strange Loops
java

public class StrangeLoops {
public static void main(String[] args) {
for (inti=0;1<10; i++) {
System.out.printin(i);
1= I++;
}
}
}

Question: What will the output of the above program be?
Answer: The output willbe 01234567809.

Explanation: The expression i = i++ seems to imply that i is incremented and then reassigned its
old value. However, due to how post-increment works in Java, i++ actually increments i, but the
assignment has no effect since it reassigns i to its value before the increment. Thus, the
increment still takes effect, and the loop behaves as if i++ were simply i++.

Puzzle 2: String Comparison

java

public class StringComparison {
public static void main(String[] args) {
String s1 = "Hello";
String s2 = "Hello";
String s3 = new String(*"Hello™);

System.out.printin(sl == s2);
System.out.printin(sl == s3);
System.out.printIn(sl.equals(s3));

¥
¥

Question: What will the output of the above program be?
Answer: The output will be:

arduino

true

false
true



Explanation:
s1 ==s2 is true because both s1 and s2 refer to the same string literal in the string pool.
s1 ==s3 is false because s3 is a new String object, and the == operator compares object
references, not values.
s1.equals(s3) is true because the equals method compares the actual contents of the strings.
Puzzle 3: Autoboxing and Unboxing
java
public class Autoboxing {
public static void main(String[] args) {
Integer a = 1000;
Integer b = 1000;
System.out.printin(a == b);

Integer ¢ = 100;
Integer d = 100;

System.out.printin(c == d);

ki
ki

Question: What will the output of the above program be?
Answer: The output will be:
arduino

false
true

Explanation:

a and b are different objects because autoboxing does not guarantee caching for values outside
the range -128 to 127. Hence, a == b is false.

c and d refer to the same cached Integer object for values between -128 and 127, so c ==d is
true.

Puzzle 4: Exception Handling

java



public class ExceptionHandling {
public static void main(String[] args) {

try {
int[] arr = new int[10];
System.out.printIn(arr[10]);

} catch (ArraylndexOutOfBoundsException e) {
System.out.printIn("Array index out of bounds!");

} catch (Exception e) {
System.out.printin("Some other exception™);

} finally {
System.out.printin("Finally block executed");
}

k
k

Question: What will the output of the above program be?
Answer: The output will be:
sql

Array index out of bounds!
Finally block executed

Explanation:

An ArraylndexOutOfBoundsException is thrown because arr[10] is out of bounds.
The first catch block catches the exception, and "Array index out of bounds!" is printed.
The finally block is always executed, so "Finally block executed™ is printed.

Puzzle 5: Integer Caching
java

public class IntegerCaching {
public static void main(String[] args) {
Integer a = 127,
Integer b = 127,
Integer ¢ = 128;
Integer d = 128;

System.out.printin(a == b);
System.out.printin(c == d);



Question: What will the output of the above program be?
Answer: The output will be:
arduino

true
false

Explanation:

a and b refer to the same cached Integer object for the value 127.
c and d do not refer to the same object because the value 128 is outside the range of the cache.



