Unit 3
 Complex Differentiation

1. Construct the analytic function $f(z)$ for which the real part is $e^{x} \cos y$.
2. If $f(z)$ is an analytic function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=\mathbf{4}\left|\mathbf{f}^{\prime}(z)\right|^{2}$
3. Show that the function $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic and also find its conjugate harmonic.
4. Show that the function $U=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate.
5. Determine the image of the infinite strip $\frac{1}{4}<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$.
6. Find the image of $\mathrm{x}=1$ under the transformation of $w=\frac{1}{z}$
7. Compute the bilinear transformation which maps the points $z=0,1, \infty$ into $w=-5,-1,3$ respectively.
8. Find the bilinear transformation which maps $\infty, \mathrm{i}, 0$ onto $0, \mathrm{i}, \infty$
9. If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic , find $\mathrm{f}(\mathrm{z})$ given that $u+v=e^{x}(\cos y+\sin y)$
