Unit 3
 Complex Differentiation

1. Define analytic function of a complex variable.

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighborhood of that point.
2. Show that $u=3 x^{2} y-y^{3}$ is a harmonic function.

Given,

$$
\begin{aligned}
& u=3 x^{2} y-y^{3} \\
& \frac{\partial u}{\partial x}=6 x y \\
& \frac{\partial^{2} u}{\partial x^{2}}=6 y \\
& \frac{\partial u}{\partial y}=3 x^{2} y-y^{3} \\
& \frac{\partial^{2} u}{\partial y^{2}}=-6 y \\
& \therefore \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6 y-6 y=0
\end{aligned}
$$

Hence \mathbf{u} is harmonic.
3. Define bilinear transformation or [Mobius Transformation]

The transformation $w=\frac{a z+b}{c z+d}, a d-b c \neq 0$ where a, b, c, d are complex numbers is called a bilinear transformation.
4. Verify the function $\phi(x, y)=e^{x} \sin y$ is harmonic or not.

Given $\phi=e^{\mathrm{x}} \sin \mathrm{y}$
To prove $\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=0$
$\frac{\partial \phi}{\partial x}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \quad \frac{\partial \phi}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}$
$\frac{\partial^{2} \phi}{\partial x^{2}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \quad \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$
$\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=e^{x} \sin y-e^{x} \sin y$
$=0$
$\therefore \phi$ satisfies the Laplace equation. ϕ is harmonic.
5. Find the invariant of bilinear transformation $w=\frac{1+z}{1-z}$.

$$
w=\frac{1+z}{1-z}
$$

Replace w by z,

$$
\begin{aligned}
& z=\frac{1+z}{1-z} \\
& z-z^{2}=1+z \\
& 1+z-z+z^{2}=0 \\
& z^{2}+1=0 \\
& z= \pm i
\end{aligned}
$$

The invariant points are $\pm \mathbf{i}$.
6. Conformal Mapping

A mapping $w=f(z)$ is said to be conformal at $z=z_{0}$ if it preserves the angle between any two curves through z_{0} in z plane both in magnitude $\&$ direction.
7. Find the critical points of the transformation $w=z+\frac{1}{z}$.

Let $w=z+\frac{1}{z}$
$\Rightarrow \frac{\mathrm{dw}}{\mathrm{dz}}=1-\frac{1}{\mathrm{z}^{2}}=\frac{\mathrm{z}^{2}-1}{\mathrm{z}^{2}}$
$\therefore \frac{\mathrm{dz}}{\mathrm{dw}}=\frac{\mathrm{z}^{2}}{\mathrm{z}^{2}-1}$
Now the critical points are $\pm 1,0$.
8. Obtain the invariant point of the transformation $w=2-\frac{2}{z}$

The invariant points are given by
$\mathrm{z}=2-\frac{2}{\mathrm{z}} ; \mathrm{z}=\frac{2 \mathrm{z}-2}{\mathrm{z}}$
$z^{2}=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i$
$\therefore \mathrm{z}=1 \pm \mathrm{i}$
9. Find the fixed point of the transformation $w=\frac{6 z-9}{z}$

The fixed points are given by replacing $\mathbf{W}=\mathbf{Z}$
ie.,,$w=\frac{6 z-9}{z}$
$\mathrm{z}=\frac{6 \mathrm{z}-9}{\mathrm{z}} \Rightarrow \mathrm{z}^{2}=6 \mathrm{z}-9$
$\Rightarrow(\mathrm{z}-3)^{2}=0 \Rightarrow \mathrm{z}=3,3$
The fixed points are 3,3.
10. Test the analyticity of the function $W=\sin Z$

Let $w=\mathbf{f}(\mathbf{z})=\sin \mathbf{z}$
$u+i v=\sin (x+i y)$
$u+i v=\sin x \cos i y+\cos x \sin y$
$u+i v=\sin x \cosh y+i \cos x \sinh y$

$$
\begin{aligned}
& \mathbf{u}=\sin x \cosh y \\
& \mathbf{u}_{x}=\cos x \cosh y \\
& \mathbf{u}_{\mathbf{y}}=\sin x \sinh y
\end{aligned}
$$

$$
v=\cos x \sinh y
$$

$$
\mathbf{v}_{x}=-\sin x \sinh y
$$

$$
v_{y}=\cos x \cosh y
$$

$\therefore u_{x}=v_{y}$ and $u_{y}=-v_{x}$
C.R equations are satisfied.

Hence the function is analytic.
11. Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic or not.

$$
\begin{aligned}
& \text { Let } f(z)=2 x y+i\left(x^{2}-y^{2}\right) \\
& u=2 x, v=x^{2}-y^{2} \\
& \frac{\partial u}{\partial x}=2 y \quad \frac{\partial v}{\partial x}=2 x \\
& \frac{\partial u}{\partial y}=2 x \quad \frac{\partial v}{\partial y}=-2 y \\
& u_{x} \neq v_{y} \text { and } \quad u_{y} \neq-v_{x}
\end{aligned}
$$

$C-R$ equations are not satisfied.
Hence $f(z)$ is not an analytic function.
12. Define $\mathrm{C}-\mathrm{R}$ equations.

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{x}}=\mathbf{v}_{\mathbf{y}} \ldots(\mathbf{1}) \\
& \mathbf{u}_{\mathbf{y}}=-\mathbf{v}_{\mathbf{x}} \ldots \ldots . . .(\mathbf{2})
\end{aligned}
$$

