Unit 4

Complex Integration

1. State Cauchy's integral formula.

Solution:
If $f(z)$ is analytic inside and on a simple closed curve C and ' a ' be any point inside C then $\int_{c} \frac{f(z)}{z-a} d z=2 \pi i . f(a)$ where the integration being taken in the positive direction around C.
2. Expand $\log (1+z)$ Taylor's series about $\mathrm{z}=0$.

Solution:

$$
\begin{aligned}
& f(z)=\log (1+z) \Rightarrow f(0)=\log 1=0 \\
& f^{\prime}(z)=\frac{1}{1+z} \Rightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime}(z)=-\frac{1}{(1+z)^{2}} \Rightarrow f^{\prime \prime}(0)=-1 \\
& f^{\prime \prime \prime}(z)=\frac{2(1+z)}{(1+z)^{4}}=\frac{2}{(1+z)^{3}} \Rightarrow f^{\prime \prime \prime}(0)=2
\end{aligned}
$$

The Taylor series of $f(z)$ about the point $z=0$ is given by

$$
\begin{aligned}
& f(z)=f(0)+\frac{z^{\prime}}{1!} f^{\prime}(0)+\frac{z^{2}}{2!} f^{\prime \prime}(0)+\frac{z^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots . . \\
& =0+\frac{z}{1!}-\frac{z^{2}}{2!}+2 \frac{z^{3}}{3!}-\ldots \\
& =z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\ldots
\end{aligned}
$$

3. Find Laurent's series of $f(z)=z^{2} e^{\frac{1}{z}}$ about $z=0$.

Solution:
Clearly $f(z)$ is not analytic at $z=0$.

$$
\begin{aligned}
f(z) & =z^{2} e^{\frac{1}{z}} \\
& =z^{2}\left[1+\frac{\left(\frac{1}{z}\right)}{1!}+\frac{\left(\frac{1}{z}\right)^{2}}{2!}+\ldots .\right] \\
& =z^{2}+\frac{z}{1!}+\frac{1}{2!}+\ldots .
\end{aligned}
$$

4. State Cauchy's Residue theorem.

If $f(z)$ be analytic at all points inside and on a simple closed curve C,except for a finite number of isolated singularities $z_{1}, z_{2}, \ldots ., z_{n}$ inside C, then

$$
\begin{aligned}
& \int_{c} f(z) d z=2 \pi i\left[\text { sum of the residues of } f(z) \text { at } z_{1}, z_{2}, \ldots, z_{n}\right] \\
& \quad=2 \pi i \sum_{i=1}^{n} R_{i} \text { where } R_{i} \text { is the residue of } f(z) \text { at } z=z_{i}
\end{aligned}
$$

5. Define pole and simple poles.

A point $z=a$ is said to be a pole $f(z)$ of order n if we can find a positive integer n such that $\lim _{\mathrm{z} \rightarrow \mathrm{a}}(\mathrm{z}-\mathrm{a})^{\mathrm{n}} \mathrm{f}(\mathrm{z}) \neq 0$
A pole of order one is called a simple pole.

$$
f(z)=\frac{1}{(z-4)^{2}(z-3)^{3}(z-1)}
$$

Example :

Hence $z=1$ is a simple pole of order 1
$Z=4$ is a simple pole of order 2
$\mathrm{Z}=3$ is a simple pole of order 3 .
6. Find the singular points of $f(z)=\frac{1}{\sin \frac{1}{z-a}}$ state their nature.

Solution:
$f(z)$ has an finite number of poles which are given by

$$
\begin{aligned}
& \frac{1}{\mathrm{z-a}}=\mathrm{n} \pi, \mathrm{n}= \pm 1, \pm 2, \ldots . \\
& \text { i.e } \mathrm{z}-\mathrm{a}=\frac{1}{\mathrm{n} \pi} \\
& \mathrm{z}=\mathrm{a}+\frac{1}{\mathrm{n} \pi}
\end{aligned}
$$

But $\mathrm{z}=\mathrm{a}$ also is a singular point.
It is an essential singularity
It is a limit point of the poles
So it is a non isolated singularity.
7. Find the singularity of the function $f(z)=\sin z / z$

Removable Singularity
8. Find the principal part and residue at the pole of

$$
f(z)=\frac{2 z+3}{(z+2)^{2}}=(2 z+3)(z+2)^{-2}
$$

[since principal part is negative powers]
$(z+2)^{-2} \Rightarrow z=-2$ is a singular pole of order 2
$\operatorname{Res}\{f(z)\}_{z=-2}=\operatorname{Lim}_{z \rightarrow-2} \frac{d}{d z}\left[(z+2)^{2} \cdot \frac{(2 z+3)}{(z+2)^{2}}\right]=2$
9. Find the regularities of the function $f(z)=\frac{\cot \pi z}{(z-a)^{3}}$

Given $f(z)=\frac{\cot \pi z}{(z-a)^{3}}=\frac{\cos \pi z}{\sin \pi z(z-a)^{3}}$
Singular points are poles and are given by $\mathrm{Dr}=0$.
$\sin \pi z=0, \quad(z-a)^{3}=0 \Rightarrow z=a$ is a singular pole of order 3
$\sin \pi z=\sin n \sin n \pi \quad$ wheren $=0, \pm 1, \pm 2, \ldots \ldots \ldots$
$\boldsymbol{\pi} \mathbf{z}=\mathbf{n} \boldsymbol{\pi} \Rightarrow \mathbf{n}=\boldsymbol{\pi}$
$\mathrm{z}=\mathrm{n}=\mathbf{0}, \pm 1, \pm 2, \ldots$. are simple poles.

