



## <u>Unit 2</u> <u>Ordinary Differential Equations</u>

- **Solve**  $(D^2 + 16)y = \cos 4x$
- Solve the following differential equation:  $(x^2D^2 2xD + 2)y = \log x$

Solve: 
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$

- By the method of variation of parameters , solve  $\frac{d^2y}{dx^2} + 4y = \tan 2x$
- By the method of variation of parameters:  $\frac{d^2y}{dx^2} + y = \sec x$
- 6. Solve  $\frac{dx}{dt} + y = \sin t$ ,  $\frac{dy}{dt} + x = \cos t$  given that x = 2, y = 0 when t = 0.
- Solve:  $(D^2 1)y = x^2 + e^{-2x} \sin 2x$
- 8. Solve:  $\frac{dx}{dt} \frac{dy}{dt} y = e^{-t}; x + \frac{dy}{dt} y = e^{2t}$