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                                                      Unit 5 
Laplace Transform 

 

1. Verify Initial Value theorem for t
f(t) e sint

 . 

      Solution: 

           Initial Value theorem:
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          Hence verified. 

 

2. State Initial value theorem on Laplace Transforms. 

          

              If the Laplace transforms of f(t) and f ‘(t) exist and  L[f (t)] F(s)   

        then    
t 0 s
lim[f(t)] lim [sF(s)]
 

  

 

 

3. State convolution theorem on Laplace Transforms. 

 

              If  f(t) and g(t) are two functions defined for t 0 , then 
                                L[(f * g)(t)] L[f (t)].L[g(t)]  

                          ie., L[(f * g)(t)] F(s).G(s)  where L[f (t)] F(s)  and  L[g(t)] G(s)  

4. State the first Shifting theorem on Laplace transforms 

 

                     If  L[f (t)] F(s)  then 

                        
at

at

(i)L[e f (t)] F(s a)

(ii)L[e f (t)] F(s a)


 

 
 

 

5. Define unit impulse function 

               The unit impulse function is defined by 
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          such that (t a)dt 1





   .It exists only at t = a at which it is infinitely great and is   

          denoted by (t a)  . 

 

6. State the Laplace transforms of periodic function with period transforms. 

                

                The Laplace transforms of a periodic function f(t) with period ‘p’ given by, 
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8. State  the condition for existence of laplace Transform 

(i) f(t) should be continuous or piecewise continuous in the given closed 

interval [a,b] where a>0. 

(ii) f(t) should be of exponential order.  


