SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE - 35
23MAT103 - DIFFERENTIAL EQUATIONS AND TRANSFORMS
UNIT - IV
FOURIER SERIES \& FOURIER TRANSFORM

1. Pick out the even function $x^{2}, \sin x, 1+x, e^{x}$
a. x^{2}
b. $x^{2}, \sin x$
c. e^{x}
d. x^{2}, e^{x}

Ans : a
2. The period of $\tan x$ is
a. $\pi / 2$
b. π
c. $3 \pi / 2$
d. 2π

Ans : b
3. The period of $\sin x$ is
a. $\pi / 2$
b. π
c. $3 \pi / 2$
d. 2π

Ans : d
4. The value of a_{0}, when the odd function $\mathrm{f}(\mathrm{x})$ is expanded in $(-\pi, \pi)$ is
a. 0
b. 2π
c. $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x$
d. π

Ans : a
5. The value of a_{0} in the Fourier series of $f(x)=x$ in $(0,2 \pi)$ is
a. 0
b. 2π
c. 4π
d. π

Ans : b
6. The value of b_{n} in the expansion of x^{2} as a Fourier series in $(-\pi, \pi)$ is
a. $2 \pi^{3} / 3$
b. $\pi^{3} / 3$
c. $3 \pi^{2} / 2$
d. 0

Ans : d
7. The Fourier series expansion of even function contains
a. Sin terms only b. Cosine terms only
c. Both
d. Neither sine nor cosine

Ans : b
8. The Fourier series expansion of an odd function contains
a. Sin terms only
b. Cosine terms only
c. Both
d. Neither sine nor cosine
9. The value of a_{n} in the Fourier series of $f(x)$ in $(0,1)$ is
a. $\frac{1}{l} \int_{0}^{l} f(x) \cos n x d x \quad$ b. $\frac{1}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x$
c. $\frac{2}{l} \int_{0}^{l} f(x) \cos n x d x$
d. $\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x$

Ans : d
10. The value of a_{0} in the Fourier series of $f(x)$ in $(0,1)$ is
a. $\frac{2}{l} \int_{0}^{l} f(x) \cos n x d x$
b. $\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x$
c. $\frac{2}{l} \int_{0}^{l} f(x) d x$
d. $\frac{2}{l} \int_{0}^{l} f(x) \sin n x d x$

Ans : c
11. The value of a_{0} in the Fourier series of $f(x)=K, 0<x<2 \pi$ is
a. K
b. 2 K
c. 3 K
d. 4 K

Ans : c
12. The value of the constant term in the Fourier series corresponding to

$$
f(x)=x-x^{3} \text { in }(-\pi, \pi) \text { is }
$$

a. $\pi-\pi^{3}$
b. π
c. π^{3}
d. 0

Ans : d
13. To what the values, the Fourier series corresponding to $f(x)=x^{2}$ in $(0,2 \pi)$ converges at $x=0$
a. $2 \pi^{2}$
b. π^{2}
c. $\pi^{2} / 2$
d. $4 \pi^{2}$

Ans : a
14. The value of the constant a_{0} in the Fourier series of $x \cos x,-\pi<x<\pi$ is
a. $\pi / 3$
b. $2 \pi / 3$
c. Π
d. 0

Ans : d
15. The value of the constant a_{0} in the Fourier series of $(\pi-x)^{2} / 4,0<x<2 \pi$ is
a. $2 \pi^{2} / 3$
b. $\pi^{2} / 3$
c. $\pi^{2} / 6$
d. π^{2}

Ans : c
16. The Fourier series of $f(x)=(\pi-x)^{2} / 4,0<x<2 \pi$ converges to \qquad at $x=0$
a. $2 \pi^{2} / 3$
b. $\pi^{2} / 3$
c. $\pi^{2} / 4$
d. π^{2}

Ans : c
17. Fourier series of $f(x)=\left\{\begin{array}{c}-\pi,-\pi<x<0 \\ x, 0<x<\pi\end{array}\right.$ converges to \qquad at $x=0$
a. $\pi / 2$
b. $-\pi / 2$
c. 0
d. $\pi / 3$

Ans : c
18. If $\mathrm{f}(\mathrm{x})$ is defined in $(-2,2)$, then b_{n} is
a. $\frac{1}{4} \int_{0}^{2} f(x) d x$
b. $\frac{1}{2} \int_{0}^{2} f(x) \cos \frac{n \pi x}{2} d x$
c. $\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n \pi x}{2} d x$
d. $\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n x}{2} d x$

Ans : c
19. The value of the a_{n} in the Fourier expansion of K, on $(0,10)$ is
a. 10
b. $2 \mathrm{~K} / \mathrm{n} \pi$
c. П
d. 0

Ans : d
20. To what value, the Fourier series corresponding to $f(x)=\left\{\begin{array}{c}\pi+x,-\pi<x<0 \\ \pi-x,\end{array} 0<x<\pi \quad\right.$ converges at $\mathrm{x}=0$
a. $\pi \square$
b. 0
c. 3π
d. 2π

Ans : a
21. To what value, the Fourier series corresponding to $f(x)=\pi-x / 2,0<x<2 \pi$ converges at $x=2 \pi$
a.b. 0
c. $\pi / 4$
d. $\quad 2 \pi$
b

Ans :
22. If a periodic function $f(x)$ is even in $(-l, l)$, then $\mathrm{a}_{0} \square$ is
a. $\frac{1}{l} \int_{0}^{l} f(x) d x$
b. $\frac{2}{l} \int_{0}^{l} f(x) d x$
c. $\frac{2}{l} \int_{-l}^{l} f(x) d x$
d. 0

Ans : b
23. The function $f(x)=\frac{1}{1-x}$ is
a. Continuous at $\mathrm{x}=1$
b. Discontinuous at $\mathrm{x}=1$
c. Continuous for all x
d. Discontinuous at $\mathrm{x}=0$
Ans : b
24. The value of the b_{n} in the Fourier expansion of $f(x)=|\sin x|$, in $(-\pi, \pi)$ is
a. 0
b. 2π
c. π
d. 4π

Ans : a
25. The value of the b_{n} in the Fourier expansion of $f(x)=x \cos x$, in $(-\pi, \pi)$ is
a. 0
b. $2 \pi / 3$
c. $4 \pi / 3$
d. 4π

Ans : a
26. The function $f(x)=e^{x}$ is
a. Even
b. Odd
c. Either even or odd
d. Neither even nor odd
Ans : d
27. The function $(1+x)^{2}$ is
a. Even
b. Odd
c. Either even or odd
d. None of these

Ans : d
28. If the Fourier series of $f(x)$ contain only sine terms then $f(x)$ is
a. even function
b. odd function
c. Either even or odd
d. Neither even nor odd

Ans : b
29. If the Fourier series of $f(x)$ contain only cosine terms then $f(x)$ is
a. even function
b. odd function
c. Either even or odd
a. $\pi-\pi^{3}$
b. $\pi^{2} / 2-\pi^{4} / 4$
c. $\pi / 2-\pi^{4} / 4$
d. 0
d. Neither even nor odd

Ans : a
30. The value of the constant a_{0} in the Fourier expansion of $f(x)=x-x^{2}$, in $(-\pi, \pi)$ is

Ans : d
31. The value of the Fourier series of $f(x)=\sqrt{1-\cos x}$ in $(0,2 \pi)$ at $\mathrm{x}=0$ is
a. 2π
b. 0
c. $\sqrt{2}$
d. 2

Ans : b
32. The value of the constant a_{0} in the Fourier expansion of $f(x)= \begin{cases}x, & 0<x<\pi \\ 2 \pi-x, & \pi<x<2 \pi\end{cases}$
a. π
b. 2π
c. 3π
d. 4π

Ans : a
33. The value of the b_{n} in the Fourier expansion of $f(x)=|x|$, in $(-\pi, \pi)$ is
a. π
b. 2π
c. 3π
d. 0

Ans : d
34. The Fourier series of $f(x)=x \sin x$, in $(-\pi, \pi)$ contain
a. only sine terms
b. only cosine terms
c. both cosine and sine terms
d. none
Ans : b
35. The Fourier series of $f(x)=|x|$, in $(-\pi, \pi)$ contain
a. only sine terms
b. only cosine terms
c. both cosine and sine terms
d. none

Ans : b
36. To which value, the Fourier series of $f(x)=\left\{\begin{array}{ll}l-x, & 0<x<l \\ 0, & l<x<2 l\end{array}\right.$ converges at $\mathrm{x}=0$
a. l
b. $l / 3$
c. $l / 2$
d. $2 l$

Ans : a
37. The value of a_{0} in the Fourier series of $f(x)=\left\{\begin{array}{ll}\pi x, & 0<x<1 \\ 0, & 1<x<2\end{array}\right.$ is
a. π
b. 2π
c. 3π
d. $\pi / 2$
Ans : d
38. The value of the constant a_{0} in the Fourier expansion of $f(x)=(x-1)^{2}, 0<x<1$ is
a. $2 / 3$
b. $1 / 3$
c. $4 / 3$
d. $8 / 3$

Ans : a
39. The value of the constant a_{n} in the Fourier expansion of $f(x)=e^{x}, 0<x<\pi$ is
a. 2π
b. $2 / \pi$
c. $1 / \pi$
d. 0

Ans : d
40. The value of the constant a_{n} in the Fourier expansion of $f(x)=\cos x, 0<x<\pi$ is
a. 2π
b. $2 / \pi$
c. $1 / \pi$
d. 0

Ans : d
41. The value of the b_{n} in the Fourier expansion of unity in $(0, \pi)$ for even values of " n " is
a. 2π
b. $2 / \pi$
c. $1 / \pi$
d. 0

Ans : d
42. If x_{0} is a continuous point, then the Fourier series of $\mathrm{f}(\mathrm{x})$ converges to
a. $f(x)$
b. $f\left(x_{0}\right)$
c. $f(0)$
d. 0

Ans : b
43. The Fourier series of $f(x)$ in $a<x<b$ converges to --------------- at x = 0
a. $f(a)$
b. $f(b)$
c. $\frac{f(a)+f(b)}{2}$
d. 0

Ans : c
44. The value of the b_{n} in the Fourier expansion of $f(x)=x \sin x,-\pi<x<\pi$ is
a. 2π
b. $\pi / 3$
c. $1 / \pi$
d. 0

Ans : d
45. The value of the a_{n} in the Fourier expansion of $f(x)$ in $-3<x<3$ is
a. $\frac{2}{3} \int_{0}^{3} f(x) \cos \frac{n \pi x}{3} d x$
b. $\frac{1}{3} \int_{0}^{3} f(x) \cos n x d x$
c. $\frac{2}{3} \int_{-3}^{3} f(x) \cos \frac{n \pi x}{3} d x$
d. $\frac{1}{3} \int_{-3}^{3} f(x) \cos n x d x$
Ans : d
46. The period of $\mathrm{f}(\mathrm{x})$ to expanded as a Fourier series in $-\pi<x<\pi$
a. 0
b. π
c. 2π
d. 3π

Ans : c

PART A
 TWO MARKS

1. Explain periodic function with two examples.

Solution : A function $f(x)$ is said to have a period T if for all $x, f(x+T)=f(x)$,
Where T is a positive constant. The least value of $\mathrm{T}>0$ is called the period of $f(\mathrm{x})$.
For examples, $f(x)=\operatorname{Sin} x$
$f(x+2 \pi)=\operatorname{Sin}(x+2 \pi)=\operatorname{Sin} x$
Here, $f(x)=f(x+2 \pi)$
2. State Dirichlet's condition for a given function to expend in Fourier series.

Solution: Any function $\mathrm{f}(\mathrm{x})$ can be developed as a Fourier series, provided
i) $\quad f(x)$ is periodic, single valued \& finite.
ii) $\quad f(x)$ has a finite number of discontinuities in any one period
iii) $f(x)$ has a finite number of maxima and minima
3. State general Fourier series.
solution: The Fourier series of $f(x)$ in $c \leq x \leq c+2 l$ is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

Where a_{0}, an $\& \mathrm{~b}_{\mathrm{n}}$ are called Fourier coefficients(or) Euler constants

4. Find the coefficient of b_{n} of $\cos 5 x$ in the Fourier cosine series of the function

 $f(x)=\sin 5 x$ in the in the interval $(0, \pi)$.Solution: The Fourier Cosine series is
$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} \cos 5 x \cos n x d x$

$$
\begin{gathered}
=\frac{2}{\pi} \int_{0}^{\pi}[\cos (5+n) x+\cos (5-n) x] d \\
=\frac{2}{\pi}\left[\frac{\sin (5+n) x}{5+n}+\frac{\sin (5-n) x}{5-n}\right]_{0}^{\pi}=0 ; \text { Therefore, } b_{n}=0
\end{gathered}
$$

5. Find the constant a_{0} of the Fourier series for the function of $f(x)=x$ in $0 \leq x \leq 2 \pi$

Solution:

$$
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi} \int_{0}^{2 \pi} x d x=\frac{1}{\pi}\left(\frac{x^{2}}{2}\right)_{0}^{2 \pi}=2 \pi
$$

6. Obtain the first term of the Fourier series for the function $\mathbf{f}(\mathbf{x})=\mathrm{x}^{2},-\pi<x<\pi$.

Solution:

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left(\frac{x^{3}}{3}\right)_{0}^{\pi}=\frac{2}{3} \pi^{2}
$$

7. If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3},-\mathrm{\pi}<\boldsymbol{x}<\pi$. Find the constant term of its Fourier series.

Solution:

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}^{3} \text {, is an odd function. Therefore, the fourier constants } \mathrm{a}_{0}=0
$$

8. Find the constant term in the Fourier series expansion of $f(x)=x$ in ($-\pi, \pi$)

Solution:
$a_{0}=0$ since $f(x)$ is an odd function $(-\pi, \pi)$
9. Find the sum of the Fourier series of $f(x)=x+x^{2}$ in $-\pi<x<\pi$ at $x=\pi$.

Solution:
Given $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{2}$

The sum of Fourier series is equal to the arithmetic mean of the value of $f(x)$ at $x=$ π and $\mathrm{x}=-\pi$.
Sum of Fourier series $=\frac{f(\pi)+f(-\pi)}{2}=\frac{\pi+\pi^{2}-\pi+\pi^{2}}{2}=\pi^{2}$
10. What is the constant term a_{0} and the coefficient of $\operatorname{cosnx}, a_{n}$ in the Fourier series of $f(x)=x-x^{3}$ in $(-\pi, \pi)$.

Solution:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{3} & =>f(-\mathrm{x})=-\mathrm{x}+\mathrm{x}^{3} \\
& =-\left(\mathrm{x}-\mathrm{x}^{3}\right)=-\mathrm{f}(\mathrm{x})
\end{aligned}
$$

Therefore, $f(x)$ is an odd function of x in $(-\pi, \pi)$. Therefore, the Fourier series of $f(x)$ Contains sine terms only. Therefore, $a_{0}=0$ and $a_{n}=0$
11. Find b_{n} in the expansion of x^{2} as a Fourier series in $(-\pi, \pi)$.

Solution:

$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \Rightarrow>f(-\mathrm{x})=\mathrm{x}^{2}=\mathrm{f}(\mathrm{x})$
Therefore, $f(x)$ is an even function of x in $(-\pi, \pi)$. The coefficient b_{n} of Sinn x in the Fourier expansion is zero. Therefore, $\mathrm{b}_{\mathrm{n}}=0$
12. Find a_{n} in expanding e^{-x} as Fourier series in ($-\pi, \pi$).

Solution:

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-x} \cos n x d x=\frac{1}{\pi}\left[\frac{e^{-x}}{1+n^{2}}(-\operatorname{Cos} n x+n \operatorname{Sin} n x)\right]_{-\pi}^{\pi} \\
=\frac{1}{\pi\left(1+n^{2}\right)}\left[-e^{-\pi}(-1)^{n}+(-1)^{n} e^{\pi}\right] \\
a_{n}=\frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)}{\pi\left(1+n^{2}\right)}=\frac{2(-1)^{n} \operatorname{Sinh} \pi}{\pi\left(1+n^{2}\right)}
\end{gathered}
$$

13. Fine the Fourier constant b_{n} for $x \operatorname{Sin} x$ in $(-\pi, \pi)$.

Solution:

Let $f(x)=x \operatorname{Sin} x$, Therfore, $f(x)=(-x) \operatorname{Sin}(-x)=x \operatorname{Sin} x=f(x)$
Therefore, $f(x)$ is even function of x in $(-\pi, \pi)$.
Therefore, $\mathrm{b}_{\mathrm{n}}=0$
14.If $f(x)=|x|$ is expanded as a Fourier series in $(-\pi, \pi)$, find the value of a_{n} ?

Solution:
$f(x)=|x|$ is an odd function in $(-\pi, \pi)$.
Therefore, the value of the Fourier coefficient $a_{n}=0$.
15. Suppose the function $x \cos x$ has the series expansion $\sum_{n=1}^{\infty} b_{n} \sin x$ in $(-\pi, \pi)$, find the value of b_{1}

Solution: $\quad b_{1}=\frac{2}{\pi} \int_{0}^{\pi} x \operatorname{Cos} x \operatorname{Sin} x d x=\frac{1}{\pi} \int_{0}^{\pi} x \operatorname{Sin} 2 x d x=\frac{1}{\pi}\left[x\left(\frac{-\cos 2 x}{2}\right)+\left(\frac{\operatorname{Sin} 2 x}{4}\right)\right]_{0}^{\pi}$

$$
=\frac{1}{\pi}\left(\frac{-\pi}{2}\right)=\frac{-1}{2}
$$

16. Find the value of a_{n} in the Fourier expansion of $f(x)=x^{2}$ in $(0,2 \pi)$

Solution:

$$
\begin{aligned}
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} & x^{2} \operatorname{Cos} n x d x=\frac{1}{\pi}\left[x^{2}\left(\frac{\operatorname{Sin} n x}{n}\right)-(2 x)\left(\frac{-\operatorname{Cos} n x}{n^{2}}\right)+2\left(\frac{\operatorname{Sin} n x}{n^{3}}\right)\right]_{0}^{2 \pi} \\
& =\frac{1}{\pi}\left(\frac{4 \pi}{n^{2}}\right)=\frac{4}{n^{2}}
\end{aligned}
$$

17. Does $f(x)=\tan x$ possess a Fourier expansion in $(0, \pi)$.

Solution:

$f(x)=\tan x$ has an infinite discontinuity at $x=\frac{\pi}{2}$

Since, the Dirichlet's conditions on continuity is not satisfied, the function $f(x)=\tan x$ has no Fourier expansion.
19. When an even function $f(x)$ is expanded in a Fourier series in the interval from $-\pi$ to π. Show that $b_{n}=0$

Solution:

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{Sin} n x d x
$$

Since $f(x)$ is even and $\operatorname{Sin} n x$ is odd then product $f(x) \operatorname{Sin} n x$ is an odd function.
By Property of definite integral $b_{n}=0$.
20. If $f(x)$ is an odd function defined in $(-1,1)$ What are the values of a_{0} and a_{n} Solution:

$$
a_{0}=0 \text { and } a_{n}=0 \text { since } f(x) \text { is an odd function. }
$$

FOURIER TRANSFORM

PART A(TWO MARKS)

1. Find the Fourier Transform of $f(\mathbf{x})=\left\{\begin{array}{lll}\mathbf{1} & \text { in } & |\mathbf{x}|<\mathbf{a} \\ \mathbf{0} & \text { in } & |\mathbf{x}|>\mathbf{a}\end{array}\right.$

$$
\begin{aligned}
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x_{d}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\mathbf{a}} \mathbf{f}(x) e^{i s x_{d x}}+\frac{1}{\sqrt{2 \pi}} \int_{-\mathbf{a}}^{\mathbf{a}} f(x) e^{i S x_{d x}+\frac{1}{\sqrt{2 \pi}}} \int_{\mathbf{a}}^{\infty} f(x) e^{i S x_{d x}} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\mathbf{a}}^{\mathbf{a}} f(x) e^{i \mathbf{i s}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\mathbf{a}}^{\mathbf{a}} 1 . \mathrm{e}^{i s x_{d x}}=\frac{1}{\sqrt{2 \pi}}\left[\frac{\mathrm{e}^{\mathrm{i} S x}}{\mathrm{is}}\right]_{-a}^{\mathrm{a}} \\
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\text { is }}\left(\mathrm{e}^{\mathrm{isa}}-\mathrm{e}^{-\mathrm{isa}}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{i s} 2 i \sin \mathrm{sa}=\sqrt{\frac{2}{\pi}} \frac{\sin \mathrm{sa}}{\mathrm{~s}}
\end{aligned}
$$

2.Find the Fourier sine transform of $\mathbf{e}^{-\mathbf{x}}$

The Fourier sine transform of $f(x)$ is given by
$F_{S}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x$
Here $\mathbf{e}^{-\mathbf{x}}=\mathbf{e}^{-|\mathbf{x}|}$ for $\mathbf{x}>0$

$$
\begin{aligned}
\therefore \mathbf{F}_{\mathbf{S}}\left[\mathbf{e}^{-\mathbf{x}}\right] & =\sqrt{\frac{2}{\pi}} \int_{\mathbf{0}}^{\infty} \mathbf{e}^{-\mathbf{x}} \sin \mathbf{s x d} \mathbf{x} \\
& =\sqrt{\frac{\mathbf{2}}{\pi}}\left(\frac{\mathbf{s}}{\mathbf{s}^{2}+1}\right)
\end{aligned}
$$

3. Find the Fourier sine transform of $\mathbf{e}^{\mathbf{a x}}$.

$$
\begin{aligned}
\mathbf{F}_{\mathbf{S}}\left[\mathbf{e}^{\mathbf{a x}}\right] & =\sqrt{\frac{\mathbf{2}}{\pi}} \int_{\mathbf{0}}^{\infty} \mathbf{f}(\mathbf{x}) \sin \mathbf{s x d} \mathbf{x} \\
& =\sqrt{\frac{\mathbf{2}}{\pi}} \int_{\mathbf{0}}^{\infty} \mathbf{e}^{-\mathbf{a x}} \sin \mathbf{s x d} \mathbf{x} \\
& =\sqrt{\frac{\mathbf{2}}{\pi}}\left(\frac{\mathbf{s}}{\mathbf{s}^{2}+\mathbf{a}^{2}}\right)
\end{aligned}
$$

4. Find the Fourier cosine transform of $\mathbf{e}^{-\mathbf{X}}$

$$
\begin{aligned}
\mathbf{F}_{\mathbf{c}}\left[\mathrm{e}^{-\mathbf{x}}\right] & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathbf{f}(\mathbf{x}) \operatorname{coss} \mathbf{x d x} \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{e}^{-\mathbf{x}} \operatorname{cossxdx} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{1}{\mathbf{s}^{2}+1}\right) \quad\left[\because \int_{0}^{\infty} \mathrm{e}^{-\mathbf{a x}} \cos b x d x=\frac{\mathbf{a}}{\mathbf{a}^{2}+\mathbf{b}^{2}}\right]
\end{aligned}
$$

5. State the convolution theorem for Fourier transforms

If $\mathrm{F}(\mathrm{s})$ and $\mathrm{G}(\mathrm{s})$ are the Fourier transform of $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ respectively then the fourier transform of the convolution of $f(x)$ and $g(x)$ is the product of their Fourier Transform.
ie $\quad \mathbf{F}[(\mathbf{f} * \mathbf{g})(\mathbf{x})]=\mathbf{F}(\mathbf{s}) \cdot \mathbf{G}(\mathbf{s})$

6. Write the Fourier Transform pair.

If $f(x)$ is a given function, then $F[f(x)]$ and $F^{-1}[F(f(x))]$ are called Fourier transform pair, where

$$
\begin{aligned}
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i S x_{d x}} \\
& F^{-1}[F(f(x))]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(f(x)) e^{i S x_{d s}}
\end{aligned}
$$

7. Find the Fourier sine transform of $\frac{1}{\mathbf{x}}$

$$
\begin{aligned}
\mathbf{F}_{\mathbf{S}}[\mathbf{f}(\mathbf{x})] & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathbf{f}(\mathbf{x}) \sin \operatorname{sxdx} \\
& =\sqrt{\frac{2}{\pi}} \int_{\mathbf{0}}^{\infty} \frac{1}{x} \sin s x d x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \mathbf{x} x}{x} d x \quad\left[\because \int_{0}^{\infty} \frac{\sin \mathbf{a x}}{x} d x=\frac{\pi}{2}, a>0\right. \\
& =\sqrt{\frac{2}{\pi}} \cdot \frac{\pi}{2}=\sqrt{\frac{\pi}{2}} \quad
\end{aligned}
$$

8.Write down the Fourier cosine transform pair of formulae.

Fourier cosine transform of $f(x)$ is

$$
F_{c}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d x
$$

Inverse Fourier cosine transform is

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d s
$$

9. Write down the Fourier sine transform pair.

Fourier sine transform of $f(x)$ is

$$
F_{S}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x
$$

Inverse Fourier cosine transform is

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{S}[f(x)] \sin s x d s
$$

10. Define self reciprocal function and give example.

If the transform of $f(x)$ is equal to $f(s)$, then the function $f(x)$ is called self-reciprocal.Example

$$
f(x)=e^{-\frac{x^{2}}{2}} \text { is self reciprocal under Fourier cosine transform. }
$$

11.Give a function which is self reciprocal with respect to the Fourier sine transform.

$$
f(x)=e^{-\frac{x^{2}}{2}} \text { is self reciprocal under Fourier sine transform. }
$$

12. State Parseval's identity on complex Fourier Transforms.

$$
\int_{0}^{\infty}|f(x)|^{2} d x=\int_{0}^{\infty}|F(s)|^{2} d s
$$

PART C MODEL QUESTIONS

1. Find the Fourier series for $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
2. Find the Fourier series for $f(x)=\left\{\begin{array}{cl}\mathcal{L}-x & \text { in } 0 \leq x \leq \uparrow \\ 0 & \text { in } \ell \leq x \leq 2 \downarrow\end{array}\right.$. Hence deduce the sum to infinity of the series $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$.
3. Obtain the Fourier series for $f(x)$ of period 21 and defined as follows

$$
f(x)=\left\{\begin{array}{ll}
L+x & \text { in }(-L, 0) \\
L-x & \text { in }(0, L)
\end{array} \quad \text { Hence deduce that } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}\right.
$$

4. Show that for $0<x<1, x=\frac{1}{2}-\frac{41}{\pi^{2}}\left(\cos \frac{\pi x}{1}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{1}+\cdots\right)$. Deduce that

$$
\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots=\frac{\pi^{4}}{96}
$$

5. Find the Fourier series for the function $\quad f(x)=\left\{\begin{array}{cc}x & \text { in } 0<x<1 \\ 1-x & \text { in } \quad 1<x<2\end{array}\right.$
6. Find the Fourier series of $f(x)=x^{2}$ in $-\pi<x<\pi \quad$ Hence find,

$$
\begin{aligned}
& \text { (i) } \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots \ldots=\frac{\pi^{2}}{6} \\
& \text { (ii) } \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots \ldots \ldots \ldots=\frac{\pi^{2}}{12} \\
& \text { (iii) } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}} \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{8}
\end{aligned}
$$

7. Find the Fourier series for the function
8. Find the Fourier series for the function $f(x)=x \sin x, 0<x<2 \pi$ and hence show that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7} \ldots=\frac{\pi-2}{4}$
9. Find the Fourier series for the function $f(x)=x\left(\pi^{2}-x^{2}\right)$ in $(-\pi, \pi)$.
10. Find the Fourier series expansion of period 2 L for the function
$f(x)=(L-x)^{2}$ in the range $(0,2 L)$. Deduce the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
11. Find the Fourier series of $f(x)=\left\{\begin{aligned}-K & \text { in }(-\pi, O) \\ K & \text { in }(O, \pi)\end{aligned}\right.$
12. Obtain Fourier series for $f(x)$ of period $2 L$ and defined as follows:
$f(x)=\left\{\begin{array}{l}L-x \text { in }(0, L) \\ 0 \quad \text { in }(L, 2 L)\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.
13. Determine the Fourier series expansion of $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in $0<x<2 \pi$ with period 2π.
14.Find the Fourier Transform of $f(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$ and hence find $\int_{0}^{\infty} \frac{\sin x}{x} d x$
14. Find the Fourier Transform of $\mathrm{e}^{\frac{-\mathrm{x}^{2}}{2}}$
15. Verify the convolution theorem under Fourier Transform for $f(x)=g(x)=e^{-x^{2}}$
16. Evaluate $\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{2}}$ using Parseval's identity.
17. Find the Fourier Transform of $f(x)=\left\{\begin{array}{cl}1-|x|, & |x|<1 \\ 0, & |x|>1\end{array}\right.$ and hence find $\int_{0}^{\infty} \frac{\sin ^{4} t}{t^{4}} d t$
18. Find the Fourier Transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & |x|<a \\ 0, & |x|>a>0\end{array}\right.$ and hence deduce that
$\int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4}$
19. Find the Fourier cosine and sine transforms of $f(x)=e^{-a x}, a>0$ and hence deduce the inverse formula.
20. Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{a}^{2} \mathrm{x}^{2}}, \mathrm{a}>0$. Hence show that the function $\mathrm{e}^{\frac{-\mathrm{x}^{2}}{2}}$
21. Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & x>2\end{array}\right.$
22. Derive the Parseval's identity for Fourier Transforms.
23. State and prove convolution theorem on Fourier Transform.
24. Find the Fourier sine and cosine transform of $\mathrm{X}^{\mathrm{n}-1}$ and hence prove $\frac{1}{\sqrt{\mathrm{x}}}$ is self reciprocal under

Fourier sine and cosine transforms.

