SNS COLLEGE OF TECHNOLOGY s

Coimbatore-35
An Autonomous Institution

INS TP EE ey Sy

Accredited by NBA - AICTE and Accredited by NAAC - UGC with A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES
[YEAR - II SEM

UNIT IV
STACK AND QUEUE

~What is a stack?)

« R Q

= i

- “ 3 A
P S s

INSTTZL NS,

»Stack is a collection of similar data items in which both push
(insertion) and pop (deletion) operations are performed at one end
called Top

»Both push and pop are allowed at only one end of Stack called Top
» LIFO Principle: Last In, First Out

FITYT177S

POp

A stack of
cafeteria trays

top

coins

A stack of shoe boxes
|

> X,

I STITTYE,

rimary Operations

push() — Pushing (storing) an element on the stack
pop() - Removing (accessing) an element from the stack

Secondary Operations

peek() — get the top data element of the stack, without removing it
isFull() — check if stack is full
iISEmpty() — check if stack is empty

{&sh Operation

»The process of adding a new data element onto stack is known as a Push
Operation

»Push operation involves a series of steps

Step 1 - Checks if the stack is full

Step 2 - If the stack is full, produces an error and exit

Step 3 - If the stack is not full, increments top to point next empty space
Step 4 - Adds new data element to the stack , where top is pointing

Step 5 - Returns success

top ——|

Push Operation

Stack

top —

Stack

[2) pushistack, 5, 3)
4 2
1) Initially stack is
'Eﬂ"llﬂ't':,-r. x 1. Increment top value by 1;
. 2. Top=Top+1
1 tl:::ll:l__l' =-1 +1 =0
3. Add new element 5 on top of stack -0
1
U al 5 < top element
top = 0
4y push(stack, 24, 3)
33 pushistack, 10, 3}
1. Increment top value by 1;
2. Top=Top+l
: o 2| 94 | <o topelement
3. Add new element10ontop1 i)
op =
1 1':] {::I t'DF" EIEITlEI'It 1].D 1. Increment top value by 1;
top =1 2. Top=Top+1
=1 +1 =2
3. Add new element 10 on top 2

Example 2
push operation

— E— E— top=4 E_ E— T 15775
— top=3 D D D
top=2| C C C C
top=1| B B B B B

top=0| A A A A A A

(a) push(A) (b) push(B) (c) push(C) (d) push(D) (e) push(k) [E?Eﬂzﬂgiﬂﬂﬂw

An error condition that occurs when there is no room in the stack for adding a

new item called stack overflow , it occurs if the stack pointer exceeds
the stack bound

Pseudocode for push operation

void push(int data)

{
if(!isFull()) //if stack is not full
{ top = top + 1; // Increment top by 1
stack[top] =data;} // add new data at the position of top
else

{ printf("Could not insert data, Stack is full.\n") };
}

‘0‘0')“‘ .
G R %
{ L4

» Removing an element from the stack is known as a Pop Operation
»Pop operation involves a series of steps

Step 1 - Checks if the stack is empty
Step 2 - If the stack is empty, produces an error and exit
Step 3 - else, accesses the data element at which top is pointing
Step 4 — Decreases the value of top by 1

Step 5 - Returns success

- o

Pop Operation
top — £ |
2 tOp - e 0
3 C
R 2

Stack Stack

2g@Seudocode for pop operation

nt pop(int data)
{ if(lisempty()) //if stack is not empty
{ data = stack[top]; //save the value on top of the stack to data
top = top - 1; // decrement top by 1
return data;
}
else

{ printf(“Stack is empty.\n"); }

ﬂ_‘

top=2| C
5 top=1| B
A A > e
pop() pop() pop() — L

Stack Underflow

An error condition that occurs when stack is empty for deleting an
element called stack Underflow , it occurs if the stack pointer top=-1

Stack is said to be in Overflow state when it is
completely full
and
Underflow state if it is completely empty

Applications of
Stacks

1. Reverse a string
2. Check well-formed (nested) parenthesis(Balancing

the symbols)
3. Convert infix expression to postfix expressions

4. Evaluate the postfix expression

INSTIT PV,

P11 1155

QUEUES

aVhat is a queue?

»Queue is a Linear Data Structure
» Collection of similar data items
»In which enqueue (insertion)operation performed at rear end and

»dequeue (deletion) operations performed at front end
»FIFO: First In, First Out / LILO: Last In Last Out Data Structure

Top =2

Queve- [Firsp-Im-Fivs{-0sf Stack - Last-Tu-First-0ud
(FIFo) (LIFO)

Queue

insertion and deletion
happens at different

ends
Rear Front
— 2 4 7 3 5 —_—
Enqueue Dequeue
Insertion Deletion

First in First out
(FIFO)

o] asic Operations of Queue (Queue ADTl

- l‘t“ 3 -

* & et >

- A
[

N ST

ary Operations

enqueue() - Adds an element to the rear of the queue (end of the queue)
dequeue() - Removes an element from the front of the queue

Secondary Operations

peek() — get the front data element of the queue, without removing it
isFull() - check if queue is full

iISEmpty() — check if queue is empty

Size() - Determines the number of elements in the queue

toString - Returns a string representation of the queue

hqueue Operation >

S INSTIEL el

»The process of adding a new data element in end of the queue is known as a
Enqueue Operation (Rear)

»Engueue operation involves a series of steps

Step 1 - Checks if the queue is full

Step 2 - If queue is full, produces an error and exit

Step 3 - If queue is not full,
- If queue is empty, increment both rear and front pointer by one

- else increment rear by one which points to next empty space
Step 4 - Adds new data element to the queue , where rear is pointing
Step 5 - Returns success

enqueue() - inserting a new element at the end of queue (Rear end)

Front of queue i
New element is
added to the rear
of the queue

Front Empty Queue

Front
Enqueue(5)

Increment front and rear
Insert 5 at that position

Rear g
Rear
ST 1] O
g ¥ 3 2 ¥ % 1 O 1 2 3 4§
Front Front
Enqueue(7) Enqueue(7)

Increment rear
Insert 7 at that position

FIT IO

Rear

Rear
sl
HEIDDNEE
3 8 3 & 3 & P - 1 - —
Front gt
Enqueue(6) Enqueue(6)

Increment rear
Insert 6 at that position

FIT IS

Example 2
Enqueue

Insert (10)

Rear Front HRear
Franik
m... Insert (20) .H..
Front Rear Fromt RKear

Insert (30)

Front Rear Fromt Rear

Front Rear 75

2 4 7 3 5 L

Dequeue Enqueue

EllqllE'llE' 9 There is no room to insert

Overflow

An error condition that occurs when there is no room in the queue for adding
a new item called queue overflow , it occurs if the queue pointer exceeds
the queue bound

Pseudocode for enqueue ~-R
op eration N S T

void enqueue(int data)
{ printf("Enter data to insert in a queue\t");
scanf("%d",&data);
if(!isFull()) //if Queue is not full
{ if(front=-1) //if Queue is empty
{ front=front +1; rear=rear+1; // Increment front & rear by 1
queue[rear] = data; } // add new data at the position of rear
else //if Queue is not empty
{ rear=rear+l; queue[rear]=data;} //Incrementrearby 1
} printf("Could not insert data, Queue is full.\n") ;

fequeue Operation

» Removing an element from the queue at front end is known as a Dequeue
Operation
»dequeue operation involves a series of steps

Step 1 - Checks if the queue is empty (front==-1)
Step 2 - If the queue is empty, produces an error and exit
Step 3 - else, remove the data element at which front is pointing
Step 4 - Increment the value of front by 1

Step 5 - Returns success

% dequeue() - Removing an front element from the queue Tl
¢ ¥

front element of queue

\ l
MR

removed from the
front of the queue

Rear Rear 4
STel 11 @l T
-1 0 1 2 3 4 -1 T 1 2 3 4
Front P
Ecnauatal Dequeue()

Dequeue ()-remove 5 from queue

Initial Queue P

_f7fs] |
0 1 2 3 4

Front
Increments front value

-1

Rear

Rear
BN E } —-0 -1 ﬂz -3 I4
’ O : 2 : ! Front
F t |]
ron Dequeue”

Dequeue remove 7 from queue, increment front to 2

FIT IS

Example 2
Dequeue

Q..
al0] al1] alZ] al3]) al4] E

Engueue always Dequeue always
happens at the happens at the 5 7 1 1 1 5
rear front Empty
Front Rear
al0] al1] af2] al3] al4]
Dequeue
T
(I-------I Eﬂ"‘]'|:'|‘||'_"_nl'4r 11 15 Er‘l"l'[:lty
5, dequeued Front Rear
al0] all] al2] al3] af4]
Dequeue
<I-------- E["|"‘|'|':_1-'|:.}l|lI 11 15 Em]:}'t},r'

7, dequeued Front Rear

2@@Scudocode for dequeue operation

nt dequeue(int data)

{ if(! isempty()) //if queue is not empty

{ data = queue[front]; //save the value on front of the queue to data
front = front+ 1; //increment front by 1
return data;

}
else
{ printf(“queue is empty\n"); }

#

J

Dequeue Enqueue

There is no element in
Queue, Underflow

An error condition that occurs when queue is empty for
deleting an element called Queue Underflow, it occurs if the
Queue ,pointer front=-1

Example
Enqueue operation & Dequeue operation

—

i §'1 ~

%j 0 1 2 3 4 Engueue(32) . 1 & %%
(TT11] oy Folole] T
. Enqueue(38) f=0 i
f= -1
Dequeue() — 32
Dequeue() — 18

¥ 4 &5 Enqueue(68) v

2 3 4
| |m]es]o6| Enguewess | | [s8] |
2 rm=

4
f=2 r=4 —— f=2,r=2

5] e -‘-
IV ST,

Queue is said to be in Overflow state when it
is full (rear=max_size queue)
and
Underflow state if it is completely
empty(front=-1)

Distinguish between stack and queue

-~
N

STACK QUEUE
It Is LIFO(Last In First Out) data _ . .
1 () It Is FIFO (First In First Out) data structure.
structure
) Insertion and deletion take place Insertion takes place at rear and deletion
at only one end called top takes place at front.
It has only one pointer variable . .
3 Y (t(f)p) It has two pointer variables(rear & front)
4 No memory wastage Memory wastage In linear gueue
. Operations: Operations:
1.push() 2.pop() 1.enqueue() 2.dequeue()
. In computer system It is used In In computer system it is used time/resource
procedure calls sharing
: Plate counter at marriage Student standing In a line at fee counter is an

reception Is an example of stack example of queue.

L

JELPPELETY 55

—

&4

