
SNS COLLEGE OF TECHNOLOGY

1

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT IV
STACK AND QUEUE

STACK

What is a stack?

Stack is a collection of similar data items in which both push
(insertion) and pop (deletion) operations are performed at one end
called Top
Both push and pop are allowed at only one end of Stack called Top
LIFO Principle: Last In, First Out

.

Operation of the stack Real time example of the stack

Basic Operations of Stack

Primary Operations
push() − Pushing (storing) an element on the stack
pop() − Removing (accessing) an element from the stack

Secondary Operations
peek() − get the top data element of the stack, without removing it
isFull() − check if stack is full
isEmpty() − check if stack is empty

Push Operation

The process of adding a new data element onto stack is known as a Push
Operation
Push operation involves a series of steps
Step 1 − Checks if the stack is full
Step 2 − If the stack is full, produces an error and exit
Step 3 − If the stack is not full, increments top to point next empty space
Step 4 − Adds new data element to the stack , where top is pointing
Step 5 − Returns success

1. Increment top value by 1;
2. Top=Top+1
 = -1 + 1 =0
3. Add new element 5 on top of stack -0

1. Increment top value by 1;
2. Top=Top+1
 = 0 + 1 =1
3. Add new element 10 on top 1

1. Increment top value by 1;
2. Top=Top+1
 = 1 + 1 =2
3. Add new element 10 on top 2

Example 2
push operation

An error condition that occurs when there is no room in the stack for adding a
new item called stack overflow , it occurs if the stack pointer exceeds
the stack bound

Pseudocode for push operation

void push(int data)
 {
 if(! isFull()) //if stack is not full

 { top = top + 1; // Increment top by 1
 stack[top] = data; } // add new data at the position of top
 else
 { printf("Could not insert data, Stack is full.\n") };
}

Pop Operation

 Removing an element from the stack is known as a Pop Operation
Pop operation involves a series of steps

 Step 1 − Checks if the stack is empty

Step 2 − If the stack is empty, produces an error and exit

Step 3 − else, accesses the data element at which top is pointing

Step 4 − Decreases the value of top by 1

Step 5 − Returns success

Pseudocode for pop operation

int pop(int data)
 { if(!isempty()) //if stack is not empty
 { data = stack[top]; //save the value on top of the stack to data
top = top - 1; // decrement top by 1
 return data;
 }
 else
 { printf(“Stack is empty.\n"); }
}

An error condition that occurs when stack is empty for deleting an
element called stack Underflow , it occurs if the stack pointer top=-1

Stack is said to be in Overflow state when it is
completely full

and
Underflow state if it is completely empty

Applications of
Stacks
 1. Reverse a string

2. Check well-formed (nested) parenthesis(Balancing
the symbols)

3. Convert infix expression to postfix expressions
4. Evaluate the postfix expression

QUEUES

What is a queue?

Queue is a Linear Data Structure
Collection of similar data items
In which enqueue (insertion)operation performed at rear end and
dequeue (deletion) operations performed at front end
FIFO: First In, First Out / LILO: Last In Last Out Data Structure

Top 

Insertion Deletion

Basic Operations of Queue (Queue ADT)

Primary Operations
enqueue() − Adds an element to the rear of the queue (end of the queue)
dequeue() − Removes an element from the front of the queue

Secondary Operations
peek() − get the front data element of the queue, without removing it
isFull() − check if queue is full
isEmpty() − check if queue is empty
Size() - Determines the number of elements in the queue
toString - Returns a string representation of the queue

Enqueue Operation

The process of adding a new data element in end of the queue is known as a
Enqueue Operation (Rear)
Enqueue operation involves a series of steps
Step 1 − Checks if the queue is full
Step 2 − If queue is full, produces an error and exit
Step 3 − If queue is not full,
 - If queue is empty, increment both rear and front pointer by one
 - else increment rear by one which points to next empty space
Step 4 − Adds new data element to the queue , where rear is pointing
Step 5 − Returns success

enqueue() − inserting a new element at the end of queue (Rear end)

Empty Queue

Increment front and rear
Insert 5 at that position

Increment rear
Insert 7 at that position

Increment rear
Insert 6 at that position

 Example 2
 Enqueue

An error condition that occurs when there is no room in the queue for adding
a new item called queue overflow , it occurs if the queue pointer exceeds
the queue bound

Pseudocode for enqueue
operation

void enqueue(int data)
 { printf("Enter data to insert in a queue\t");
 scanf("%d",&data);
 if(! isFull()) //if Queue is not full

 { if(front=-1) //if Queue is empty
 { front=front +1; rear=rear+1; // Increment front & rear by 1
 queue[rear] = data; } // add new data at the position of rear
 else //if Queue is not empty
 { rear=rear+1; queue[rear] = data; } // Increment rear by 1
 } printf("Could not insert data, Queue is full.\n") ;
}

Dequeue Operation

 Removing an element from the queue at front end is known as a Dequeue
 Operation
dequeue operation involves a series of steps

 Step 1 − Checks if the queue is empty (front==-1)

Step 2 − If the queue is empty, produces an error and exit

Step 3 − else, remove the data element at which front is pointing

Step 4 − Increment the value of front by 1

Step 5 − Returns success

dequeue() − Removing an front element from the queue

Initial Queue
Dequeue ()-remove 5 from queue

Increments front value

Dequeue remove 7 from queue, increment front to 2

 Example 2
 Dequeue

Pseudocode for dequeue operation

int dequeue(int data)
 { if(! isempty()) //if queue is not empty
 { data = queue[front]; //save the value on front of the queue to data

 front = front+ 1; // increment front by 1
 return data;
 }
 else
 { printf(“queue is empty\n"); }
}

An error condition that occurs when queue is empty for
deleting an element called Queue Underflow , it occurs if the
Queue ,pointer front=-1

Example
 Enqueue operation & Dequeue operation

Queue is said to be in Overflow state when it
is full (rear=max_size_queue)

and
Underflow state if it is completely

empty(front=-1)

Distinguish between stack and queue

Si.No STACK QUEUE

1
It is LIFO(Last In First Out) data

structure
It is FIFO (First In First Out) data structure.

2
Insertion and deletion take place

at only one end called top

Insertion takes place at rear and deletion

takes place at front.

3
It has only one pointer variable

(top)
It has two pointer variables(rear & front)

4 No memory wastage Memory wastage in linear queue

5
Operations:

1.push() 2.pop()

Operations:

1.enqueue() 2.dequeue()

6
In computer system it is used in

procedure calls

In computer system it is used time/resource

sharing

7.
Plate counter at marriage

reception is an example of stack

Student standing in a line at fee counter is an

example of queue.

