
SNS COLLEGE OF TECHNOLOGY

1

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT IV
STACK AND QUEUE

STACK

What is a stack?

Stack is a collection of similar data items in which both push
(insertion) and pop (deletion) operations are performed at one end
called Top
Both push and pop are allowed at only one end of Stack called Top
LIFO Principle: Last In, First Out

.

Operation of the stack Real time example of the stack

Basic Operations of Stack

Primary Operations
push() − Pushing (storing) an element on the stack
pop() − Removing (accessing) an element from the stack

Secondary Operations
peek() − get the top data element of the stack, without removing it
isFull() − check if stack is full
isEmpty() − check if stack is empty

Push Operation

The process of adding a new data element onto stack is known as a Push
Operation
Push operation involves a series of steps
Step 1 − Checks if the stack is full
Step 2 − If the stack is full, produces an error and exit
Step 3 − If the stack is not full, increments top to point next empty space
Step 4 − Adds new data element to the stack , where top is pointing
Step 5 − Returns success

1. Increment top value by 1;
2. Top=Top+1
 = -1 + 1 =0
3. Add new element 5 on top of stack -0

1. Increment top value by 1;
2. Top=Top+1
 = 0 + 1 =1
3. Add new element 10 on top 1

1. Increment top value by 1;
2. Top=Top+1
 = 1 + 1 =2
3. Add new element 10 on top 2

Example 2
push operation

An error condition that occurs when there is no room in the stack for adding a
new item called stack overflow , it occurs if the stack pointer exceeds
the stack bound

Pseudocode for push operation

void push(int data)
 {
 if(! isFull()) //if stack is not full

 { top = top + 1; // Increment top by 1
 stack[top] = data; } // add new data at the position of top
 else
 { printf("Could not insert data, Stack is full.\n") };
}

Pop Operation

 Removing an element from the stack is known as a Pop Operation
Pop operation involves a series of steps

 Step 1 − Checks if the stack is empty

Step 2 − If the stack is empty, produces an error and exit

Step 3 − else, accesses the data element at which top is pointing

Step 4 − Decreases the value of top by 1

Step 5 − Returns success

Pseudocode for pop operation

int pop(int data)
 { if(!isempty()) //if stack is not empty
 { data = stack[top]; //save the value on top of the stack to data
top = top - 1; // decrement top by 1
 return data;
 }
 else
 { printf(“Stack is empty.\n"); }
}

An error condition that occurs when stack is empty for deleting an
element called stack Underflow , it occurs if the stack pointer top=-1

Stack is said to be in Overflow state when it is
completely full

and
Underflow state if it is completely empty

Applications of
Stacks
 1. Reverse a string

2. Check well-formed (nested) parenthesis(Balancing
the symbols)

3. Convert infix expression to postfix expressions
4. Evaluate the postfix expression

QUEUES

What is a queue?

Queue is a Linear Data Structure
Collection of similar data items
In which enqueue (insertion)operation performed at rear end and
dequeue (deletion) operations performed at front end
FIFO: First In, First Out / LILO: Last In Last Out Data Structure

Top

Insertion Deletion

Basic Operations of Queue (Queue ADT)

Primary Operations
enqueue() − Adds an element to the rear of the queue (end of the queue)
dequeue() − Removes an element from the front of the queue

Secondary Operations
peek() − get the front data element of the queue, without removing it
isFull() − check if queue is full
isEmpty() − check if queue is empty
Size() - Determines the number of elements in the queue
toString - Returns a string representation of the queue

Enqueue Operation

The process of adding a new data element in end of the queue is known as a
Enqueue Operation (Rear)
Enqueue operation involves a series of steps
Step 1 − Checks if the queue is full
Step 2 − If queue is full, produces an error and exit
Step 3 − If queue is not full,
 - If queue is empty, increment both rear and front pointer by one
 - else increment rear by one which points to next empty space
Step 4 − Adds new data element to the queue , where rear is pointing
Step 5 − Returns success

enqueue() − inserting a new element at the end of queue (Rear end)

Empty Queue

Increment front and rear
Insert 5 at that position

Increment rear
Insert 7 at that position

Increment rear
Insert 6 at that position

 Example 2
 Enqueue

An error condition that occurs when there is no room in the queue for adding
a new item called queue overflow , it occurs if the queue pointer exceeds
the queue bound

Pseudocode for enqueue
operation

void enqueue(int data)
 { printf("Enter data to insert in a queue\t");
 scanf("%d",&data);
 if(! isFull()) //if Queue is not full

 { if(front=-1) //if Queue is empty
 { front=front +1; rear=rear+1; // Increment front & rear by 1
 queue[rear] = data; } // add new data at the position of rear
 else //if Queue is not empty
 { rear=rear+1; queue[rear] = data; } // Increment rear by 1
 } printf("Could not insert data, Queue is full.\n") ;
}

Dequeue Operation

 Removing an element from the queue at front end is known as a Dequeue
 Operation
dequeue operation involves a series of steps

 Step 1 − Checks if the queue is empty (front==-1)

Step 2 − If the queue is empty, produces an error and exit

Step 3 − else, remove the data element at which front is pointing

Step 4 − Increment the value of front by 1

Step 5 − Returns success

dequeue() − Removing an front element from the queue

Initial Queue
Dequeue ()-remove 5 from queue

Increments front value

Dequeue remove 7 from queue, increment front to 2

 Example 2
 Dequeue

Pseudocode for dequeue operation

int dequeue(int data)
 { if(! isempty()) //if queue is not empty
 { data = queue[front]; //save the value on front of the queue to data

 front = front+ 1; // increment front by 1
 return data;
 }
 else
 { printf(“queue is empty\n"); }
}

An error condition that occurs when queue is empty for
deleting an element called Queue Underflow , it occurs if the
Queue ,pointer front=-1

Example
 Enqueue operation & Dequeue operation

Queue is said to be in Overflow state when it
is full (rear=max_size_queue)

and
Underflow state if it is completely

empty(front=-1)

Distinguish between stack and queue

Si.No STACK QUEUE

1
It is LIFO(Last In First Out) data

structure
It is FIFO (First In First Out) data structure.

2
Insertion and deletion take place

at only one end called top

Insertion takes place at rear and deletion

takes place at front.

3
It has only one pointer variable

(top)
It has two pointer variables(rear & front)

4 No memory wastage Memory wastage in linear queue

5
Operations:

1.push() 2.pop()

Operations:

1.enqueue() 2.dequeue()

6
In computer system it is used in

procedure calls

In computer system it is used time/resource

sharing

7.
Plate counter at marriage

reception is an example of stack

Student standing in a line at fee counter is an

example of queue.

