
SNS COLLEGE OF TECHNOLOGY

1

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT-IV

Expression

 An expression is a formula in which operands are
linked to each other by the use of operators to

compute a value

Expression

Three types of expression
1. Infix expression: X + Y
 Operators are written in-between their operands
2. Postfix expression /Reverse Polish notation: X Y +
 Operators are written after their operands
3. Prefix expression /Polish notation: + X Y
 Operators are written before their operands

Example 1:
Convert Infix expression to A * B + C / D Postfix Expression

 ((A * B) +(C / D))

(A B*) +(C / D)
(AB *) +(C D/)
(AB *) (C D/)+
AB * C D/+

Example 2:
Convert Infix expression to A * B / C + D Postfix Expression

(A * B) / C + D
((A * B) / C) + D
(((A * B) / C) + D)

i. (((AB*) / C) + D)
ii. ((AB* C/) + D)
iii. AB* C/ D+

Example 3:
Convert Infix expression to A + B - C / D Postfix Expression

A + B - C / D
A + B - (C / D)
(A + B) - (C / D)
((A + B) - (C / D))

i. ((A B+) - (C D/))
ii. A B+ C D/-

Example 4:
Convert Infix expression to A + (B *(C-D)/E) Postfix Expression

A + (B *(C-D)/E)
i. A + (B *(CD-)/E)
ii. A + (BCD-*/E)
iii. A + (BCD-*E/)
iv. A (BCD-*E/)+

 ABCD-*E/+

Algorithm to convert Infix To Postfix
 1.Get a Infix expression and Empty stack as input
2.Scan the infix expression from left to right
3.If the scanned character is an operand, output it as postfix expression
4.If the scanned character is an operator

1. If the precedence of the scanned operator is greater than the precedence of the operator in the stack(or the
stack is empty or the stack contains a ‘(‘), push it on to stack.

2. Else, Pop all the operators from the stack which are greater than or equal to in precedence than that of the
scanned operator.

3. After doing that, Push the scanned operator to the stack
4. If the scanned character is an ‘(‘, push it to the stack.
5. If the scanned character is an ‘)’, pop the stack and output it until a ‘(‘ is encountered, and discard both the

parenthesis.
6. Repeat steps 2-6 until infix expression is fully scanned
7. Print the output as postfix expression
8. Pop and output from the stack until it is not empty.

Example 1

Example 2

Example 3

+ is lower precedence than *
Pop * from stack to postfix
Push + to the stack

Example 4

- Have low precedence than *
Pop *, + from stack

 Example5

) , pop + from stack to postfix
pop ‘(’ from stack and discard both the parenthesis

) , pop - from stack to postfix
pop ‘(’ from stack and discard both the parenthesis

/ equal precedence *, pop * from stack to postfix
Push / to stack

) , pop / from stack to postfix
pop ‘(’ from stack and discard both the parenthesis

 Example 6

4. Evaluate the postfix expression

 Evaluate the postfix expression

Other name of postfix expression is reverse polish notation
Algorithm:
1.Get Postfix Expression and an empty stack as input
2.Scan the postfix expression from left to right
3.If element is an operand, push it into the stack
4.If the element is an operator , pop twice
5.Evaluate expression according to the operator & push the
result back to the stack
6.Repeat step 2 to 5 until expression is end
7.The value in the stack is the final answer

Example 2

Example 3

