2.3 The Queue ADT

2.3.1 Queue Model

A Queue is a linear data structure which follows First In First Out (FIFO) principle, in which
insertion is performed at rear end and deletion is performed at front end. '

Abstract Data 7}779 2.37

Scanned with CamScanner

Dequeue (Q)
—]
FRONT

xample : Waiting Line in Reservation Countef,

2.3.2 Operations on Queue
¢ fundamental operations performed on queue are
1. Enqueue

2. Dequeue

Enqueue :
The process of inserting an element in the queue. b~

Dequeue :
The process of deleting an element from the queue.

Exception Conditions

Overflow : Attempt to insert a

Underflow : Attempt to delete an element from the
underflow.

n element, when the queue is full is said to be overflow ¢

queue, when the queue is empty is

«%.

2.3.3 Implementation of Queue
Queue can be implemented using arrays and pointers.

Array Implementation
In this implementation queue Q is associated with two pointers namely rear pointer

pointer.

To insert an element X onto the Queue Q, the rear pointer is incremented by L,and |

Queue [Rear] = X

To delete an element, the Queue [Front] is returned and the Front Pointer is incremen

ROUTINE TO ENQUEUE |
| void Enqueue (int X) . s o
{ 'i . rFTZ—\\LJ

if (rear > = max _ Arraysize)
print (“ Queue overflow”);
’

else

238

Scanned with CamScanner

Rear = Rear + 1.

Queue l,Rcur] = X

-

}

SUTINE FOR DEQUEUE |
| //”\'m? delete () ,

! if (Front <0)
print (** Queue Underﬂow");
else
{ . :
X = Queue [Front);
if '(Froﬁt == Réar)
Front = 0;
Beér = 3i; | ;
} .
else
Front = Front + 1 ;
} .
}

Scanned with CamScanner

!
—

~ —>

IO 15 15
% 2 3 4 0o 1 2 3 4
F F,R
ENQUELUE (15)
DEQUEUE (Q)

In Dequeue operation, if Front = Rear, then rcseik
the pointers to their initial values, (i.e. F=0, R’-L

£ > o

DEQUEUE (Q)

Fig. 2.3.3 (a) Illustration for Array Implementation of Queye,

Scanned with CamScanner

