

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES I YEAR - II SEM

UNIT 4 – STACK AND QUEUE

TOPIC 6 – Expression Parsing

Expression Parsing

The way to write arithmetic expression is known as a notation. An arithmetic expression can be written in three different but equivalent notations, i.e., without changing the essence or output of an expression.

 \succ These notations are – ► Infix Notation ► Prefix Notation ► Postfix Notation

Infix Notation

 \succ infix notation, where operators are used in-between operands. \succ It is easy for us humans to read, write, and speak in infix notation but the same does not go well with computing devices.

> An algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

a - b + c

▶a,b,c→operands \rightarrow ,+ \rightarrow operator

Prefix Notation

- > In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands.
- \succ For example, +ab.
- \succ This is equivalent to its infix notation a + b. Prefix notation is also known as Polish Notation.

Postfix Notation

> This notation style is known as Reversed Polish Notation. \succ In this notation style, the operator is postfixed to the operands i.e., the operator is written after the operands.

 \triangleright For example, ab+. This is equivalent to its infix notation a + b.

Precedence

- > When an operand is in between two different operators, which operator will take the operand first, is decided by the precedence of an operator over others.
- $a+b*c \rightarrow a+(b*c)$ multiplication operation has precedence over addition, b * c will be evaluated first. A table of operator precedence is provided later.

Associativity

- \blacktriangleright Associativity describes the rule where operators with the same precedence appear in an expression.
- \blacktriangleright For example, in expression a + b c, both + and have the same precedence, then which part of the expression will be evaluated first, is determined by associativity of those operators.
- \succ Here, both + and are left associative, so the expression will be evaluated as (a + b) - c.

 $a+b-c \rightarrow (a+b)-c$ $>a+b*c \rightarrow (a+b)*c$

 \geq a + b*c, the expression part b*c will be evaluated first, with multiplication as precedence over addition. We here use parenthesis for a + b to be evaluated first, like (a + b)*c

Sr.No.	Operator	Precedence	Associativity
1	Exponentiation ^	Highest	Right Associative
2	Multiplication (*) & Division (/)	Second Highest	Left Associative
3	Addition (+) & Subtraction (-)	Lowest	Left Associative

Infix to post fix and prefix

Sr.No.	Infix Notation	Prefix Notation	Postfix Notation
1	a + b	+ a b	a b +
2	(a + b) * c	* + a b c	a b + c *
3	a * (b + c)	* a + b c	abc+∗
4	a/b+c/d	+/ab/cd	a b / c d / +
5	(a + b) * (c + d)	* + a b + c d	a b + c d + *
6	((a + b) * c) - d	- * + a b c d	a b + c * d -

