DEPARTMENT OF INFORMATION TECHNOLOGY

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 4 - STACK AND QUEUE
TOPIC 6 - Expression Parsing

Expression Parsing

The way to write arithmetic expression is known as a notation. An arithmetic expression can be written in three different but equivalent notations, i.e., without changing the essence or output of an expression.
$>$ These notations are -
$>$ Infix Notation
$>$ Prefix Notation
$>$ Postfix Notation

Infix Notation

$>$ infix notation, where operators are used in-between operands.
$>$ It is easy for us humans to read, write, and speak in infix notation but the same does not go well with computing devices.
$>$ An algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

$$
\begin{aligned}
& >\mathrm{a}-\mathrm{b}+\mathrm{c} \\
& >\mathrm{a}, \mathrm{~b}, \mathrm{c} \rightarrow \text { operands } \\
& >-,+\rightarrow \text { operator }
\end{aligned}
$$

Prefix Notation

$>$ In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands.
$>$ For example, + ab.
$>$ This is equivalent to its infix notation $\mathrm{a}+\mathrm{b}$. Prefix notation is also known as Polish Notation.

Postfix Notation

$>$ This notation style is known as Reversed Polish Notation.
$>$ In this notation style, the operator is postfixed to the operands i.e., the operator is written after the operands.
$>$ For example, $a b+$. This is equivalent to its infix notation $a+b$.

Precedence

$>$ When an operand is in between two different operators, which operator will take the operand first, is decided by the precedence of an operator over others.

$$
a+b^{*} c \rightarrow a+\left(b^{*} c\right)
$$

$>$ multiplication operation has precedence over addition, $\mathrm{b} * \mathrm{c}$ will be evaluated first. A table of operator precedence is provided later.

Associativity

$>$ Associativity describes the rule where operators with the same precedence appear in an expression.
$>$ For example, in expression $\mathrm{a}+\mathrm{b}-\mathrm{c}$, both + and - have the same precedence, then which part of the expression will be evaluated first, is determined by associativity of those operators.
$>$ Here, both + and - are left associative, so the expression will be evaluated as (a $+\mathrm{b})-\mathrm{c}$.

$$
\begin{aligned}
& >\mathrm{a}+\mathrm{b}-\mathrm{c} \rightarrow(\mathrm{a}+\mathrm{b})-\mathrm{c} \\
& >\mathrm{a}+\mathrm{b}^{*} \mathrm{c} \rightarrow(\mathrm{a}+\mathrm{b})^{*} \mathrm{c}
\end{aligned}
$$

$>\mathrm{a}+\mathrm{b}^{*} \mathrm{c}$, the expression part $\mathrm{b}^{*} \mathrm{c}$ will be evaluated first, with multiplication as precedence over addition. We here use parenthesis for $\mathrm{a}+\mathrm{b}$ to be evaluated first, like $(a+b) * c$

Sr.No.	Operator	Precedence	Associativity
1	Exponentiation ^	Highest	Right Associative
2	Multiplication (*) \& Division (/)	Second Highest	Left Associative
3	Addition $(+) \&$ Subtraction (-)	Lowest	Left Associative

Infix to post fix and prefix

Sr.No.	Infix Notation	Prefix Notation	Postfix Notation
1	$a+b$	$+a b$	$a b+$
2	$(a+b) * c$	$*+a b c$	$a b+c *$
3	$a *(b+c)$	$* a+b c$	$a b c+*$
4	$a / b+c / d$	$+/ a b / c d$	$a b / c d /+$
5	$(a+b) *(c+d)$	$*+a b+c d$	$a b+c d+*$
6	$((a+b) * c)-d$	$-*+a b c d$	$a b+c * d-$

