

### **SNS COLLEGE OF TECHNOLOGY**



Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade(Cycle III) Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

### DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

### **SMART IOT APPLICATIONS**

III YEAR/ V SEMESTER

1

**UNIT 3 -BASIC APPLICATIONS** 

TOPIC-1 -OVERVIEW OF IOT AND ITS SIGNIFICANCE



### **INTRODUCTION TO IOT**



#### What is IoT?

- •Definition: IoT is a network of physical objects embedded with sensors, software, and other technologies to connect and exchange data with other devices and systems over the internet.
- •Basic Concept: Connecting devices via the internet to collect and exchange data.
- •Examples: Smart home devices, wearable tech, smart appliances.



### **INTRODUCTION TO IOT**





Smart Home

#### **EVOLUTION OF IOT**





# Evolution of Internet of Things





### **COMPONENTS OF IOT**



### **Key Components of IoT**

•Sensors and Actuators: Collect and act on data.

•Connectivity: Wi-Fi, Bluetooth, Cellular.

•Data Processing and Analytics: Analyze collected data.

•User Interface: Mobile apps, web dashboards for user interaction.



#### **COMPONENTS OF IOT**



### **Key Components of IoT**

- •Sensors and Actuators: Collect and act on data.
- •Connectivity: Wi-Fi, Bluetooth, Cellular.
- •Data Processing and Analytics: Analyze collected data.
- •User Interface: Mobile apps, web dashboards for user interaction.



Figure- Sensor and actuator in a system



### **HOW IOT WORKS**



### **How IoT Works**

- •Data Collection: Sensors gather data from the environment.
- •Transmission: Data is sent to the cloud via connectivity solutions.
- •Processing: Data is processed and analyzed in the cloud.
- •Action: Commands are sent back to devices based on data analysis.



### **Example of an IoT system**





Reference: https://uploads-ssl.webflow.com/5ca1e52b062058be53feebb8/60be33f8a5fb6bb60ac3d28e\_Desktop%20-%2033.png



### **IOT ARCHITECTURE**



- **Device Layer**: Physical devices and sensors.
- **Communication Layer**: Connectivity methods.
- **Data Processing Layer**: Cloud computing, data analytics.
- **Application Layer**: User applications and interfaces.



### **IOT ARCHITECTURE**



- **Device Layer**: Physical devices and sensors.
- **Communication Layer**: Connectivity methods.
- **Data Processing Layer**: Cloud computing, data analytics.
- **Application Layer**: User applications and interfaces.



### **IOT ARCHITECTURE**





Reference: https://www.zipitwireless.com/hubfs/4%20Layers%20of%20IoT%20Architecture.png



### **ACTIVITY**



### **Interactive IoT Brainstorm and Design**





### **IOT APPLICATIONS IN DAILY LIFE**



- ❖ IoT Applications in Daily LifeSmart Homes: Automated lighting,
  - security systems, smart thermostats.
- **Wearable Devices**: Fitness trackers, smartwatches.
- **Smart Cities:** Traffic management, smart parking, waste management.



### **INDUSTRIAL IOT APPLICATIONS**



- **Agriculture:** Smart farming, livestock monitoring.
- **Manufacturing:** Predictive maintenance, automation.
- **Healthcare:** Remote patient monitoring, smart medical devices.



Reference: https://techieloops.com/wp-content/uploads/2021/09/farm-automation-systems.jpg



#### **BENEFITS OF IOT**



- **! Improved Efficiency:** Automation and optimized operations.
- **Enhanced Customer Experience:** Personalized services.
- **Cost Savings:** Reduced operational costs.
- **Better Decision-Making:** Data-driven insights.



#### **CHALLENGES IN IOT**



- **Security and Privacy:** Protecting data and devices.
- **Data Management:** Handling large volumes of data.
- Interoperability: Ensuring devices work together seamlessly.
- Initial Costs: High setup and deployment costs.

### **FUTURE OF IOT**



- •Growth Projections: Increasing number of connected devices.
- •Emerging Technologies: 5G, AI, edge computing.
- •Industry Impact: Potential to revolutionize multiple sectors.



 $https://sp-ao.shortpixel.ai/client/to\_webp, q\_glossy, ret\_img, w\_1920, h\_1080/https://contenteratechspace.com/wp-content/uploads/2023/03/edge-ai.png$ 



### **ASSESSMENT**



- 1.What is IOT
- 2.List applications of IOT
- 3.What is future of IOT
- 4.Explain IOT architecture





## THANK YOU