An Autonomous Institution

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING 16EC302 - TRANSMISSION LINES AND ANTENNAS

III YEAR/V SEMESTER

UNIT 1 - TRANSMISSION LINE THEORY
TOPIC 5 -INPUT \& TANSFER IMPEDANCE

INPUT IMEDANCE OF A LINE

What is Zin or Input impedance of a transmission line?

INPUT IMEDANCE OF A LINE

> Input impedance of a transmission line is defined as the impedance measured across the input terminals of the transmission lines
$>$ It is the impedance seen looking into the sending end or the input terminals
$>$ It is also the impedance at the input into which the source must work when the line is connected

INPUT IMEDANCE OF A LINE

> Also known as driving point impedance
$>$ Denoted by Zin = Vs/Is
> Also known as driving point impedance

INPUT IMEDANCE OF A LINE - STANDARD FORMS

- FIRST FORM

The voltage and current expressions - Hyperbolic form
$\mathrm{E}=\mathrm{E}_{\mathrm{R}} \cosh \sqrt{\mathrm{zy} \mathrm{s}}+\mathrm{I}_{\mathrm{R}} \mathrm{Z}_{0} \sinh \sqrt{\mathrm{zy}}$ s $----\cdots---(1)$
$I=I_{R} \cosh \sqrt{z y s}+E_{R} \sinh \sqrt{z y s}$
\bar{Z}_{0}
To find input voltage \& input current for the transmission line of length l , replace s by $\mathrm{l}, \sqrt{\mathrm{zy}}$ by γ, E by Es $\& \mathrm{I}$ by Is in equations (1) \& (2),

Es $=E_{R} \cosh \gamma l+I_{R} Z_{0} \sinh \gamma l$
Is $=I_{R} \cosh \gamma l+E_{R} \sinh \gamma l$
Z_{0}

Input Impedance $\mathrm{Zs}=\mathrm{Es} / \mathrm{Is}$
Therefore, Eqn (3) / Eqn (4) gives,
Es $=\mathrm{I}_{\mathrm{R}} \mathrm{Z}_{\mathrm{R}} \cosh \gamma \mathrm{l}+\mathrm{Y}_{\mathrm{R}} \mathrm{Z}_{0} \sinh \gamma \mathrm{l}$
Is $=I_{R} \cosh \gamma \mathrm{l}+\frac{\mathrm{I}_{\mathrm{R}} \mathrm{Z}_{\mathrm{R}}}{\mathrm{Z}_{0}} \sinh \gamma \mathrm{l}$
$\mathrm{Zs}=\mathrm{Z}_{0}\left\lceil\mathrm{Z}_{\mathrm{R}} \cosh \gamma \mathrm{l}+\mathrm{Z}_{0} \sinh \gamma \mathrm{l}\right.$
$\mathrm{Z}_{0} \cosh \gamma \mathrm{l}+\mathrm{Z}_{\mathrm{R}} \sinh \gamma \mathrm{l}$
Equation (5) is one of the standard form of input impedance of a transmission line.

- SECOND FORM

$$
\begin{align*}
& E=\frac{E_{R}\left(Z_{R}+Z_{0}\right)}{\left.2 Z_{R}\right)}\left[\begin{array}{c}
e^{\sqrt{z y s}}+\frac{\left(Z_{R}-Z_{0}\right) e^{-\sqrt{z y s}}}{\left(Z_{R}+Z_{0}\right)} \\
I=\frac{I_{R}\left(Z_{R}+Z_{0}\right)}{2 Z_{R}}
\end{array}\right]\left[\begin{array}{c}
e^{\sqrt{z y s}}-\frac{\left(Z_{R}-Z_{0}\right) e^{\sqrt{z y s}}}{\left(Z_{R}+Z_{0}\right)}
\end{array}\right] \tag{6}
\end{align*}
$$

To find input voltage \& input current for the transmission line of length l , replace s by $\mathrm{l}, \sqrt{\mathrm{zy}}$ by γ, E by Es $\& \mathrm{I}$ by Is in equations (1) \& (2) \& by getting Es/ Is

INPUT IMEDANCE OF A LINE

- SECOND FORM

$$
\begin{align*}
& E=I_{R} Z_{R}\left(Z_{R}+Z_{0}\right)\left[e^{\gamma l}+\left(Z_{R}-Z_{0}\right) e-\gamma l\right. \\
& \left.\frac{2 Z_{R}}{\left(Z_{R}+Z_{0}\right)}\right] \tag{6}\\
& \mathrm{I}=\mathrm{I}_{\mathrm{R}}\left(\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{0}\right) \quad \mathrm{e}^{\gamma \mathrm{l}}-\left(\mathrm{Z}_{\mathrm{R}}-\mathrm{Z}_{0}\right) \mathrm{e}-\gamma^{\mathrm{l}} \\
& 2 Z_{0} \tag{7}\\
& \mathrm{Zs}=\mathrm{Z}_{0} \quad \mathrm{e}^{\gamma \mathrm{l}}+\left(\mathrm{Z}_{\mathrm{R}}-\mathrm{Z}_{0}\right) \mathrm{e}-\gamma^{\mathrm{l}} \\
& \left.\frac{\left(Z_{R}+Z_{0}\right)}{e^{\gamma l}-\frac{\left(Z_{R^{-}}-Z_{0}\right) e^{-\gamma l}}{\left(Z_{R}+Z_{0}\right)}}\right] \tag{8}
\end{align*}
$$

Eqn (8) is the another form of input impedance of a transmission line

INPUT IMEDANCE OF A LINE

Input impedance is given by

$$
Z_{\text {in }}(\ell)=Z_{0} \frac{Z_{\mathrm{L}}+Z_{0} \tanh (\gamma \ell)}{Z_{0}+Z_{\mathrm{L}} \tanh (\gamma \ell)} .
$$

```
\(\tanh (\mathrm{j} \theta)=\mathrm{j} \tan \theta\)
Subs \(\gamma=\mathrm{j} \beta, \mathrm{Z}_{0} \tan \mathrm{~h} \gamma \mathrm{l}=\mathrm{j} \mathrm{Z}_{0} \tan \beta \mathrm{l}\)
```


INPUT IMEDANCE OF A LOSSLESS LINE

$>$ For a lossless transmission line, Input impedance is purely imaginary and is given by $\gamma=\mathrm{j} \beta$
$>$ Therefore the input impedance is given by,

$$
Z_{\text {in }}(\ell)=Z_{0} \frac{Z_{\mathrm{L}}+j Z_{0} \tan (\beta \ell)}{Z_{0}+j Z_{\mathrm{L}} \tan (\beta \ell)}
$$

where $\beta=\frac{2 \pi}{\lambda}$ is the wavenumber.

INPUT IMEDANCE OF SPECIAL CASES OF LINE

> Matched load
Another special case is when the load impedance is equal to the characteristic impedance of the line (i.e. the line is matched), in which case the impedance reduces to the characteristic impedance of the line so that,

$$
\operatorname{Zin}=\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{L}}
$$

INPUT IMEDANCE OF SPECIAL CASES OF LINE

$>$ Short line

For the case of a shorted load (i.e $\mathrm{Z}_{\mathrm{L}}=0$), the input impedance is purely imaginary and a periodic function of position and wavelength (frequency)

$$
\operatorname{Zin}(\mathrm{l})=\mathrm{j} \mathrm{Z} 0 \tan (\beta \mathrm{l})
$$

INFINITE LINE

$>$ When the length l of the line is infinite, i.e l approaches to infinity, thus

$$
\mathrm{Zin}=\mathrm{Z}_{0}
$$

$>$ Hence it is concluded that a line of infinite length irrespective of the type of terminating load, has an input impedance Z_{0}, thus behaving like a line of finite length terminated in its characteristic impedance Z_{0}

TRANSFER IMPEDANCE

$>$ Input voltage of a transmission line is

$$
E s=\frac{E_{R}\left(Z_{R}+Z_{0}\right)}{2 Z_{R}}\left[e^{\sqrt{z y s}}+\frac{\left(Z_{R}-Z_{0}\right)}{\left(Z_{R}+Z_{0}\right)} e^{-\sqrt{z y s}}\right.
$$

Subs E_{R} by $I_{R} Z_{R}$ in the above expression, we get

$$
E s=\frac{I_{R} Z_{R}\left(Z_{R}+Z_{0}\right)}{2 Z_{R}}\left[e^{\sqrt{z y s}}+\frac{\left(Z_{R}-Z_{0}\right)}{\left(Z_{R}+Z_{0}\right)}\right]
$$

Subs. Reflection co-efficient $k=\left(Z_{R}-Z_{0}\right) /\left(Z_{R}+Z_{0}\right)$

TRANSFER IMPEDANCE

$>$ Transfer Impedance $\mathrm{Z}_{\mathrm{T}}=\mathrm{Es} / \mathrm{I}_{\mathrm{R}}$

$$
\mathrm{Z}_{\mathrm{T}}=\frac{\mathrm{Es}}{\mathrm{I}_{\mathrm{R}}}=\frac{\left(\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{0}\right)}{2} \mathrm{e}^{\sqrt{\mathrm{zy} s}+}+\frac{\left(\mathrm{Z}_{\mathrm{R}}-\mathrm{Z}_{0}\right)}{2} \mathrm{e}^{-\sqrt{z y s}}
$$

Rearranging the above expression, we get,

$$
\mathrm{Z}_{\mathrm{T}}=\frac{\mathrm{Z}_{\mathrm{R}}}{} \mathrm{e}^{\sqrt{\mathrm{zys}}}+\frac{\mathrm{Z}_{\mathrm{R}}}{} \mathrm{e}^{-\sqrt{\mathrm{zy} s}}+\mathrm{Z}_{2} \mathrm{e}^{\sqrt{ } \mathrm{zys}-\mathrm{Z}_{0}} \mathrm{e}^{-\sqrt{\mathrm{zys}}}
$$

$\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{R}} \cosh \sqrt{ } \mathrm{zy} \mathrm{s}_{+} \mathrm{Z}_{0} \sinh \sqrt{ } \mathrm{zy} \mathrm{s}$

ASSESSMENT

1. Define input impedance of a transmission line.
2. Give the standard form of input impedance of a lossless line.
3. What is infinite line.
4. Compare the input impedances of half wave and quarter wave lines.
5. What is Transfer Impedance?

THANK YOU

