

# SNS COLLEGE OF TECHNOLOGY



#### Coimbatore-35

#### **An Autonomous Institution**

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade(Cycle III)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## 19ECE306-SMART IOT APPLICATIONS

## UNIT 1 BASIC APPLICATIONS

## 2 marks

- Q1: What is the primary function of using IoT in parking management?
- **A1:** The primary function of using IoT in parking management is to monitor parking space availability in real-time, reducing the time spent searching for parking and optimizing space usage.
- **Q2:** Name a case study example of an IoT-based parking management system.
- **A2:** A case study example is SFpark in San Francisco, which uses sensors and variable pricing to manage parking spaces.
- Q3: What is the main goal of structural health monitoring using IoT?
- **A3:** The main goal is to monitor the condition of infrastructure such as bridges and buildings, allowing for early detection of structural issues and preventive maintenance.
- **Q4:** Identify the components involved in IoT-based structural health monitoring.
- **A4:** Components include sensors (strain gauges, accelerometers) attached to structures, data acquisition systems, and analytical software to predict structural integrity.
- **Q5:** How do IoT devices help in urban noise monitoring?
- **A5:** IoT devices monitor noise levels in urban areas, helping to identify and control noise pollution sources, and inform urban planning and public health improvements.
- **Q6:** Provide an example of a city that uses IoT for noise monitoring.
- **A6:** Barcelona uses IoT for noise monitoring, with a system that informs city planning and policy-making.
- Q7: What is the significance of dynamic mapping in urban areas using IoT?

**A7:** Dynamic mapping using IoT allows for real-time urban planning, emergency response, and infrastructure development.

**Q8:** Name a tool commonly used in IoT-enabled urban mapping.

**A8:** Geographic Information Systems (GIS) is commonly used in IoT-enabled urban mapping.

**Q9:** How are smartphones used in IoT urban applications?

**A9:** Smartphones are used as sensors to collect urban data, such as traffic and mobility patterns, through their GPS, accelerometer, and gyroscope sensors.

Q10: Give an example of an application that uses smartphone data for urban management.

**A10:** The Citymapper app uses smartphone data to provide real-time transportation information.

**Q11:** Why is it important to monitor EMF levels in urban areas?

**A11:** Monitoring EMF levels is important for public health safety, compliance with regulatory standards, and informing the public about EMF exposure.

Q12: Mention a case study related to EMF level monitoring.

**A12:** Monitoring of EMF levels around mobile phone towers in New York City is a relevant case study.

Q13: What are the benefits of using IoT to monitor traffic flow?

**A13:** Benefits include reducing congestion, optimizing traffic signals, and providing real-time traffic updates to users.

Q14: Provide an example of a city that uses IoT for traffic congestion management.

**A14:** London uses IoT for traffic congestion management, with a system that uses real-time data to optimize traffic flow.

Q15: What are the advantages of IoT-enabled street lighting systems?

**A15:** Advantages include energy savings, reduced light pollution, and enhanced public safety.

Q16: Name a city that has implemented smart street lighting using IoT.

**A16:** Los Angeles has implemented smart street lighting, significantly reducing energy consumption.

**Q17:** How do IoT solutions improve waste management?

**A17:** IoT solutions optimize waste collection routes, reduce operational costs, and enhance recycling and waste reduction through smart bins with fill-level sensors and data analysis platforms.

**Q18:** Give an example of a city using IoT for waste management.

A18: Copenhagen uses smart bins that notify waste collectors when they need to be emptied.

**Q19:** What is the purpose of integrating IoT technology into roads?

**A19:** The purpose is to enhance transportation efficiency and safety through real-time road condition monitoring, traffic management, and accident detection and response.

**Q20:** Mention a case study of a smart road using IoT technology.

**A20:** The A58 motorway in the Netherlands uses sensors to monitor road conditions and manage traffic.